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" Abstract:

. The inverse gravimetric problem willmhave a unique:soiution,
~if the density distribution iekrequired to be an element of a
“suitable Hilbert space, and a condition of minimum norm is appli-
_ed' Examples of suitabie spaces are spaces spanned by harmonic
.den51ty dlstrlbutlons or by . linear comblnatlons of disjoint 1ndl~.
cator functlons, in both cases u51ng Sobolev type inner products.f
The space will also have a reprodu01ng kernel, which may be re-
garded as an implicitly 1mposed covariance kernel for the evalua—
_.tlon functlonals, thereby also deflnlng an auto and cross- covari-'

ance funotlon for and with the gravity ancomalies.

: oomparieon with empirically estimated covariance funotions.
for density (anomaly) and gravity anomaly data close to the Rh1~
negraben area, FRG, shows that the above mentioned spaces 1mpose‘
"either a too strong or a too weak covarlance between the guanti-
‘ties. Therefore, the use of other alternatlves becomes necessary.,
_Here 1nd1oafor functions w1th overlapping support scems to be
'3rea115tlc, and flexibhle Pnough to provide the proper covariange

pattern.

Revised version of a paper prescented at 17. Conference on Mathe-

'matical.Geophysioep Blanes, Cataluna, Spaiﬁ,-June 1988.




1. Introduction

. Traditionally, the inverse gravimetric problem is defined as.

"~ the problem of determining the (mass) density distribution of the

Earth from gravity'data measured at the surface of the Earth. We
will, however, here consider the more general problem of determi-
ning the density distribution from all kinds of data, iﬁcluding
in-situ density observations, geoid ﬁndulations obtained from sa-
_tellite radar altimetry, and ultimately seismic data. Hereby the
solution of the inverse gravimetric problem willhcontribute'to
the improved modelling of the exterior grav1ty field, which is

one of the 1mportant tasks of geodesy.

._The mathematical fotmulation of'the general problem therefore
includes the selection of one or several funtion spaces (see e.g.
-Backus and Gllbert 1967). We w1ll here only consider the selec-
"tion of the functlon space, which contain elements which can be
expected to be good approximations to the density distribution.
Furthermore, since we will only consider linearized observation
1functibnala, we will only deal w1th the den51ty contrast, or den-
'"sity ahomaly function, d. This functlon ig’ equal to the differen-
ce between a long wavelength, primarily radial dependent,-deh31ty
reference function, p, and the true density, p, i.e. d = p = Poe

The.potentiai of d is the anomalous potential, T,
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where Q is the Earth Q a point 1n31de the Earth G the grav1ty

constant and P an arbitrary p01nt.

A function space which‘has the structure necessary for the.se—
lation of Lhe inverse qravxmetrlo prnblem ig presoribed through
the base functlons, which span the space, and an inner product.
Thisg may be done in many dlfferent ways, but Lwo pr1nn1plpg may -

serve as guldellnes

(a) the mathematlcal and computat10nal 51mpllclty of the func—

tlun space




(b) the physical {geological) properties which are modelled by

the space.

In (b} we will also include the (not necessarily complete) mo- .

delling of statistical information like density variation and

spatial correlation. This‘informatioﬁ is sometimes labelled "a-

- priori" information (see e.g.-Jeckson, 1979).

In our age of the computer, principle {a)rmay be a good star-
ting point. The computer may be used as an experimental tool, and
+if one is so lucky as to find a mathematically simple model,
which agrees with the,physical'reality,.then there should be a
good chance that the inverse problem has a reasonable solution.

We will here report on a numerlcal experiment which however
:dld not lead us to. a reallstlc solution of the lnverse problem.

But 1t gave us some further insight.,

In section 2 we aescrlbe the numerlcal experlment, where we
" used anomalous density distributions, which were harmonlc, and
selected anflnner product_based on statistical information. Slnce
in performing the;eXperimenttit becane clear that_hermonicity is
‘too strong a coﬁdition, we looked into the-poesibility of-usihgz
the traditional indicator functions. These fuhctions generally
have dlsjoint eupport thereby making it inmpossible to prescribe’
a 51mple inner product leadlng to correlated den51ty Values, eyx-
‘cept 100 % or O . correlatlons. In section 3 we propose to use
indicator functlons with a certain ]Olnt support Thls ‘leads to

correlated den51ty values.

2. Harmonic inversion of gravity data

The -general inverse gravimetric problem is a typical approki—
mation proublem in a function space. We have a.finite‘number of
observations, and the function we want to determine is ah element
of an infinite dimensional space. The brute force way to find the

functlon is to select a subspace of dlmen31on less than or equal




to the number of observations, and then détermine a unigue ele-
ment using a least.séuafes or mimimum norm condition. However,
this selectlon may be quite arbltrary, and it seems better to
build a more general model flrst Such a model is e.q. the tradi-
:.tlonal set of d15]01nt 1nd1cator functions, by whlch a geologlcal
structure is broken into pieces. Another alternative is to use
so~called guasi-harmonic functiohs, i.e. functions which are

nearly harmonic, .

(2y
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ﬁhere A is the Laplaée operator'and.f a non-zero function of the
fadial distance, r. If f(r) =1, d is harmonic. The advantage of
~using these functions 1é described 'in (Tscherning and Suenkel,
1981) and (Tschernlng and Strykowskl, 1987). We will here only
conéider harmonic d, 31nce it for local applications seems of li-
mlted importance how f is selected (We have tried wvarious f(r)‘=z

rm, m an integer).Then. (from- now on using spherical approx1ma—

tlon}
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where ¢ is thé'latitude, A the lohgitude, R the mean radius of
fthe-Earth, §ij the normalized_associated Legéndre'functions; and.
c.. constants. o ' ' )
ij : ‘ . o
This space may be equipped with an inngr product, so that the

space is endowed with a reproducing kernel, K(P,Q},
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whgre Gij aré positive constants and (¢',A',r') are the spherical
- coordinates of Q. If the constants are selected so that they are

independent' of j and for each i equal to the mean square sum of

the coefficients Cij in (3), then:the space may be used to 6btain
an optimal estimate of d. It is optimal in a least sguares sense,
described in Sanso' (1986). The reproducing kernel will then have
the 1nterpretat10n of an implicitly 1mposed auto covarlance func-

tlon of the density anomalles

The constants cij in (3) are naturally'not known. However, the
‘corresponding square sum of the coefficients of the anomalous po-
tential T may be estimated on parametric form, see e.g. {(Knudsen,

' 1987).
With
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the corresponding "degree-variances" of T becomes using (1)

4ﬂR

Gi(T) = 04(d) (. __ 2 SR D)
(21+1)(21+3) '
The parameter form used for ¢;(T) is
-6i(T) =.a * Ej . i.< m
: Rg _ . . '
g (T) = A/((1-1)i~2)(i+B}) - (Em)21+2 1 2 mo{6)
1 : .

ﬁwhere A and:RB are real conStants'(RBt< R) and B is an integer
constant. This permit the numerical evaluation Qf'thexreproducing
kernel using vlosed uxpressions_(Tscherningrand'Rapp, 1974). The
constants a. cH describes the‘variation due to regional residual
PffEPt% caused by the uncertainty in the rPfPrence den51ty func—'

‘ tlun p or LorrEprndlng potential, WO. _

The use of models like the one given. by eq. (6} corresponds to
the use of a weighted Sobolev type 1nner product, see Tscherning
(1972 19860 . ' "




Having fixed the reproducing kernel (4}, the inverse problem
is readily solved using the method of collocation, i.e. with ob-

servations x. = L.{(d4) + wv.,
. i i i

d(P) = {K(P,L.)}IT {K(L,,L.) + 7..} % (x.} (7)

: 1 13 1) 3

- where K(Lj,Li) is equal to the observation functionals Lj,Ly ap-
" plied on K, vi_thé observation error with variance-covariance

Tijr and d(P) is the estimated density value in P.

The software for estimating'the‘covariance function parame-'
ters, and for the evaluation of (7) is described in Forsberg et

Cal. (1988) and Hein et al. (1987).

The harmonic inversion method was used on gravity and (surfa-
ce) density data from an area close to the Rhine Graben, FRB, see'
Fig. 1. Totally_lQ4 grav1ty and_denslty.values were availlable 1in
" an area of externt 25 km x 25 km. The small afearmékes the cova-
riance function pérameter estimation difficult. However, the au-
to~covarianc% function of the grévityianomalies was modelles with
a reasonable success, see Fig. 2. But the slmultaneous model ling
of thée auto-covariance function and the cross-covariance function
between gravity and density values was not successful, see Flg. 3
and 4. It was impossible to obtaln ‘a density-gravity cross-corre-
lation as small as the one observed and still keepinhg the obser-
ved gravity anomaly variance. The model crosé—correlation was ge-

neraily arbund_QO:%, while the observed value was arognd 65 %

The reason for this, probably, is the harmonicity Qf the den-~
sity ﬁuhctions.-This'property will'alWays force the maximal vari-
ance to bé at the boundéfy surféce. it also céuses.the btrbng
cross correlatlon between the grav1ty and the denSJty valueq. We
did, however, anyway carry out a density estlmatlon u51ng ag. (7}
 w1th grav1ty anomallcs as observed values. The result is showﬁ in
Fig. 5. Gravity were also_predlcted from density values, and from
combined gravity and density values. The results were nol satis-
factorf, in_the'Sense that the sténdard"deviation of the diffe-
rences thwaeh'observed and computed guantities was close to the
standard deviation of the observed values.. |
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This negative result is, howewer, not completely negative. At
least we have verified that we have a method to solve the inverse

gravimetric problem.

3. Use of base functions with overlapping support

Since the use of harmonic base functions - at least for the
used data set - caused difficultiés, other alternétiﬁes must be

considered. However, we must be sure that the density. covariance

‘_functlon implied by the selected functlon space can be ‘used to

model the empirically observed function. Also, it would be impor-
tant to be able to use information on lateral density discontinu-
ities. (Radial discontinuities may be modelled using a disconti-

nuous function f in eq. (2}).

~The most frequently used set of base functions is the set of
indicator functions with disjoint support. They are very flexib-
" le, and may represent a geoiogical strdéture .nicely. In {Sanso'
and Tscherning, 1982) it is proposed to use such a functlon to
model the den31ty down to a certaln sphere, and then use harmonlc
density dlstrlbutlons inside the sphere. The inner product must
“in this case be the one related to the L2 norm, used for the in-

dlcator functlons, and a Sobolev type norm for the harmonlc part,

' 2 [ 52 B .2 ,
|af? = [ a dﬂo . j (F(ay)®de, (8)
90 31 '
where andhﬂl'are the sets outside and inside a sphere,:respec—

. _tively, and F is a suitable differential operator.
However, thls ch01se implicitly c01responds to the use of a

wden31ty covariance funotlon at the Earth's qurFaPP w1th anly va-

Iues equal o one and zero,

K(P,Q) =

*—h
Nz
[y

Li(Byri(@) /vy, R (9)

_where I; is thé indicator function of the i'th block and vi is
the volume of thé-black.V(This‘is'because=the-normaiized,base

. functions are
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T.(p) = 1.(py/(v.)t?y.
3 kl .l

- One way to overcome this problém is to édopt a covariance
function for the points, dependent on the distance between the
p01nts, for example. This may be possible working in 2 dimen-
sions, but for 3-dimensional modelling it seems very difficult to
find analytic covarlance models different from these described in
section 2. The maln problem being, that we must be able to calcu-
_late LiK(P,Q), where Lj for example is the Newton‘functlonal, eq. .
(1).

A simple, and computationally easy, way to prescribe a covari-
ance function with values different from 1 and 0, is to use over-

lapplng indicator functlons.j

This is clearly 1llustrated u31ng 3 blocks, each with volume

'equal to 1, and having a 50 % overlap, see Fig. 6. .

Is

—— e,

11_' I3

Flg. 6. Overlapping base function.

The correspondlng reprodu01ng kernel (eqg. (9)) is computed in
' Appendlx 1. The resultlng correlation function is shown in Flg

7, as a function of distance between the: poxnts P and Q.

4
100
33+
-33 - 1 sidelength

Fig. 7. Correlation functien with 3 hlocks.
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The calculation of the value of linear functionals applied on
the reproducing kernels is most easily done w1thout the explicit
calculation of the expan81on of the kernel in the old base func-
tions. Since Cholesky decomposition of a 9051tlve definite matrlx_
and the Gram Smith orthonormalization process are equlvalent ope-

rations, we may take advantage of this.

Suppose the matrix-C as elements have theeinner products of

all the base fupctions,

Ciy =.< Ty, Iy 2,
land'that_c hes the Chelesky decomposition:
c = ﬁTU,

where U is an upper. triangular matrix. Then

is the vector of orthonormalized base functions. This is easily

éeen, because of thé linearity of the inner product

ATghy T > = <07 Igs, 070 T -

(U"l)?'<{Ij}, tr,1Hov™h = hHTer™?

il

Id,

; where Td is theiidehtity matrix.

Coneider now, for example, the gravity disturbance functio-
‘nal 8§g(P) evaluated in P, and let 6gi(P) be the gravity in P cau-

sad by the i'Lh indicator function,

) ;,L (Ii)'

. . ' a )
89, (P) = o [ 1,0 2« sq(p)'

ar. |P~Q|
o S

" Then the 1mp11ed covarlance between two grav1ty dlsturbance

‘values becomes_
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(L K(P,Q)) =

Lsgip) §g(Q)

n _
= IL L (1)
Mg 8g(Q) " i

(wThsg (2T (0T sg (@) 1) = K(8g(P), §9(Q)).

- These considerations also show (the proof is left as an exer-
cise to the reader) that the use of correlated'density values .
corresponds to the 1ntroduct10n of unknown den51ty values for
each block. as paradmeters in collocatlon. However, the parameters

are correlated with C as the variance-covariance matrix.

It dlso shows the problsms associated with the use of indica-
tor functions, namely the rather large computational task. How-
ever, ﬁhelc matrix will be?sparse, since generally only a small
.number of blocks will overlsp. If the block structUrs is selected
‘iﬁ a regular manner, then sparse matrix techniques may be ap-

plied, see Fig. 8.

|
O
o fm e

S -

|

I
‘r--_-

....l-.-_-_-.

Fig._S. Non-zero elements in C matrik, where 3rblocks.overlap.

4. Conclusion

The use of a comblnatlon of guasi- harmonlc functlons and base
functlons with overlapplng support should glve us a reallstlc and
flexible tool to provide a proper covariance pattern. Numerlcal

‘1nvestngat]ons Are in progress, but. have not yet been completed.
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A congiderable number of new and quite simple'mathematical mo-
‘dels are now available in order to study the inverse gravimetric
*problem.'_Howeverr other slightly more complicated models, using
_indicator_funetioﬁs‘multiplied by linear_functions in the (Carte-
“sian} coordinates (Sanso'et al., 1986) should aleo be investiga-
ted.'They have the theoretical'advantage that more general innerr"
.products'involving e.g. the derivatives of the functions could be
‘used. Since the solution of the inverse problem in thls case.
lcorresponds to the quadratlc minimalization of density derivati-
.ves, i1t might lead to density estimates w1th interesting physical

properties.

The problem in future investigations will not so much be the
lack of mathematical models, as the lack of suitable sets of'test
" data. Where do we find sets of density values distributed well,
both with respect to depth and horlzontally7 The data sample from
the area close to the Rhlne Graben is unlque, but more such samp-
les from reglons with dlfferent geologlcal characterlstlcs,

should be made available.

Acknowledgements: This 1nvestlgatlon has in part been sponsored

by Norsk Hydro Udforsknlng.

:AEEendix. The reproducing kernel of a Hilbert space spanned by 2

o]

and 3 .indicator functions with 50 % overlap.

The covariance. function is the product sum of the orthonorma—

_ llzed (Gram Smith), functlons.'
IIll Lodee. 1y = Iy

where the bar indicates normalization. Since

—
N
1] .
B[R

, we have
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‘The evaluation functionals, EVP, have norm:
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Consequently, we have constructed a covariance function with 3

‘correlation values: 100 %, 50 % -and -50 %.

The introduction of one more block gives an even more reaso-
'nablelfunction. The third block is supposed to be disjoint with

the first, S0

I3 = (I3 = <Tp Il JiIy=<T,, 10T ) |

3 3 3
Now,
Iy - Ty=<T,, 100, - 1 5 17 ?¥2-% 1)
= T,- 51,03 Iy
liglz" |13-2 - %.<;3,12> *_% CIy,I4> —.%.<§2711%l
s 3 |12|2 '§'<11,i2; » L |1i.? - £
I; = ‘%’%/2 {14 | 3 T, 5 I -

Then after some rearrangement .

CKg(PQ) = 5 (p);2(Q>+I3(P}13(Q)

(Il{P)Il(Q)+2I2

- | . _ _— : 1
'—(IBCP)Iz(Q)fIB(Q)IQ(P))+2(Il(P)I3(Q)+Il(Q)I3(P))
“‘Il(P)IQKg)+Il(Q)Iz(P?)

|Evp|2 . % eﬁerywheru .

AJFor the inner product,.thgre are séveral possibilities:
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P . in Il,_g in I3 _ <EVP, EVQ> =5
P in I 9] in I, and I . - -1
. l’ - 2 ) 3 . V & % 9 & 8 & F 90 - 2
P in I and I,. Q in I., and I.l = 3-1 + L i = 3
2 1’ 2 3 = " 9% & & 5 & 8 9 2 . 2
. . 2 l LI ('....'.. . 2 2

1

o

The correlations are then, 100 %, 33 %, -33% and 33 % as a

function of distance, as shown in Fig. 7.
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