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" gravity anamalies. Typical applications of gravity field predic-
"ition include, ¢.g., estimation of geoid undulations in satellite -

“tical for use in the reduction of geodetic angle observations or

. gravity field data, all containing significant gravity field infor-
mation, '
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culated from models of the topographic masses. In this way, significant improvements of the prediction
results are obtained in mountainous atreas. In this paper we describe methods for the calenlation of such

. gravitational terrain effects, applicable in coliocation approximation of the gravity field, The terrain ef-

.- fects on gravity field quantities such as gravily anomalies, deflections of the vertical, and geoid undula-
tions are calculated using a system of rectangular prisms, representing either g quasi-traditional model of
the topography and the isostatic compensation or a residual terrain model, where only the deviation of
the topography from a mean elevation sutface is considered. To test the terrain reduction methods, nu-

, 1. INTRODUCTION
. ‘The object of gravity ficld prediction is to estimate ua-

- known quantities related to the gravity field, e.g., deflections

of the vertical, height anomalies @i-¢., geoid undulations) and

positioned geodetic stations (in order to convert the ‘observed’

- ellipsoidal heights to heights above mean sea level), estima-
" tion of mean free air gravity anomalies from satellite altimeter

data in oceanic areas and estimation of deflections of the ver- °

- . in precise inertial navigation. .
", Traditional approaches, such as Stoke’s and Vening-Mei-
_mesz’ integral methods, basically use only one type of data in

‘the prediction of another, c.g., the estimation of deflections of

" the vertical from a set of gravity anomalies. In many situa-

tions, there will, however, be available many different kinds of

Such heterogeneous data can be fully utilized in the collo-
cation approximation method by which one may construct an,

- in-z sense, optimal approximation to the gravity potential us-
“ing a given set of gravity field quantities, typically consisting

of a set of spherical harmonic coefficients, 1° X 1° mean grav-. -
ity anomalies, point observations of gravity anomalies, and
deflections of the vertical, In the collocation method, éach ob-

_ sql_'\‘r'ation, regardless of the data type, is treated as the value of .

a functional applied on the anomalous potential, and some
optimal ‘smooth* least norm approximation is constructed in .
accordance with the observed functional values in a way such
that the approximation is a harmonic function. The prediction
results obtained using collocation depend, of course (as for all:
methods), on the- available density of gravity field observa-
tions and the local gravity field variation. In mountainous
areas a major part of this variation is due to the topography, 4 -
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“fact llustrated by the smoothness of the Bouguer anomalies

versus the free air anomalies, the last being the type of gravity
anomaly directly related to the anomalous potential. It is thus
clear that in areas with rugged topography it will be advanta- -

© geous to eliminate the effect of the terrain..

The local effect of the topography is also very marked on
deflections of the vertical (easily contributing 10-20 arc sec)
and on higher-order derivatives, whereas the local topo-
graphic effect on the geoid is relatively small, typically in the

~ centimeter range under individual hills or mountains, On a _
* more regional scale (hundreds of kilometers) the effects of the

topography become very large, and in order to avoid biasing
gravity and height anomalies, it is necessary to include the ef-

 fect of the isostatic compensation, €.g., by the use of the Airy

isostatic model, in which mountain masses are compensated
by crustal roots, extending into the denser maantle, to secure
local hydrostatic equilibrium. Alternatively, to the use of the
isostatic compensation, one may choose only to take the ‘short

. periodic’ variations of the topography into account, removing
.the effect of the ‘residual’ topography with respect to some
‘mean elevation surface. In this way the total mass removed

will in the average sum 1o zero, as for the 'topographic/isos-
tatic reduction. o R
In sections 3 and 4 of this paper we will describe practical
methods and formulas for, the calculation of the terrain effects
on the commonmost gravity field quantities. We have chosen -

10 usc'the prism method, where the influence of the terrain is

calculated using rectangular prism integration elements. Most
carlier papers dealing with this method are concerned with
calculation of gravity terrain corrections, e.g., Ehrismann et al.
[1966, Boedecker [1975], and many others, Applications for
deflections of the vertical are reported by Elmiger [1969) and
for height anomalies by Gurtner [1978]. : .

The methods are tested and compared in a numerical pre-

diction experiment with data from two 1° x I° areas in New
. Mexico. The promising prediction results are presented in sec-

tion 5. Let us, however, first give a brief description of the
carth’s gravity ficld and the method. of collocation.
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2. APPROXIMATION OF THE GRAVITY FIELD
UsING, COLLOCATION

Let the gravity potential of the earth, W, be expressed as
' W=U+T (0
where U is the normal potential, determined by the para.me~

ters of a chosen reference ellipsoid, and T is the anomalous
potential. In U is included the centrifugal potential and the ef

© feets of all masses external to the earth, and thus T will be a .
harmonic function (V2T =) outside the surface of the earth..
. As T'is a small quantity compared to W, we will work with T

in spherical approximation, where the earth is,approximated’
by a sphere of radius R = 6371 km. We will also- suppose that
T can be dcveloped as a series in sohd sphencal harmonics,
" Le,

ne.nn=2L 5 H ) ngsm ¢)(C'e°°SJ1+SySan7\)

)

where r is the distance from the ongm (coincident with the - -
~ earth’s center of mass), ¢ and A are the geocentric latitude and
longitude, respectively, G the grawtatmnal constant, M the.

*mass of the earth, and P, are the fully normalized associated

* ‘Legendre polynomals Because T is a harmonic function, it

will be an clement of a.reproducing kernel Hilbert space of
harmonic functions. Such a space is a linear vector space with

" ‘an inner product ( - . ?) and a function K(P, 0), the reproduc-
. ingkernel, which is an element of the space itself if one of the

"variables are held fixed and which has the ‘reproducing’ prop-

erty f(P) =
or Moritz [1980].

The observed gravity field quantities may be cxpressed as -

linearized functionals applied on the anomalous potential, m,
.= L{T). We Have, ¢. £ for the most u'uportant quanutlcs,

Helght anomaly .

{=T/y €))
Deflections of the vertical L

1T .

-2 4

£ ~ % .( )

1 aT .
) c _"rcosq:y aA (5)‘

(Free air) gravity anomaly )
o T 2 . N
bg=-=-=T ®©.

- where y is the normal gravity. In so-called exact collocation a

" unique approx:mauon T'to Tis constructed by requiring the.
observations to be reproduced exactly and 7 to have mini- -
mum norm, the norm being defined by the inner product of
the Hilbert space. The approximation will be a linear combi-.

nation of the harmonic functions LK( -, Q)the dot indicates
that L, has been applied on K(P, ¢} as a function of Py

nQ =

where the coefficients g, are delermmcd by solvmg the normal
=_equat10ns

2 aLK(: )

{LILIK( ) [0:} = {m;}

_ If the. obscrvauons contain errors, the variance of l.he ‘errors
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' must be added to the diagonal elements of {L,K,K( , )} In

- tion of the quantities LL,K( , ). When the o, are chosen to §

Q). K(7, O)). For details see Tschemmg [1978"}' | method for ‘our test predictions in New Mexico. As degree

‘variances, we used simple ratiopal functmn expressions, re-

-local approximation was produced using (a part of) the avail-

L

@

ST,

this casc a weighted square sum of the norm of T and the ob-
servation errors is minimized. For details, see, e. & Tscherning
and Forsberg [1978].

The norm of the Hilbert space is determined through the se- j
lection of a reproducing kernel K. For a rotational invariant §
inner product, X will have the form g

K_(i’, 0-3 (5;;,‘-'—) RPosh =Koy O f

where a, are posmve constants (the degree variances), R, the 3
radius of 2 sphere bounding the area of harmonicity (the Bjer-. §
hammar sphere), r and r the distances from the origin of P i
and 0, respecuvely, and  the angular distance between P and §
Q. The series (9) may in many cases be represented by closed §
expressions, thus strongly facilitating the numerical evalua-

appronmate the empmca.l degree vanances,

o= Z (C7+ 8 (0) |

: thén K represents- thc empirical covariance function for the |
- anomalous potential T. In this case the approximation tech-
-nique is denoted least squares collocation, as the approxima-

tion T fulfils a least squares principle [Heiskanen and Moritz,
1967]. (Note that T is not necessarily an element of the used
Hilbert space. However, the only condition to be fulfilled in

- order to enable the construction of T'is that (8) can be solved.)

In this paper we have used the least squares collocation

sulung in a closed expression for K, as déscribed in our earlier

paper [Tscherning and Forsberg, 1918]. Through a choice .of §
- approptiate function constants, the overall shape of the repro- §
- ducing kernel i$ designed to approximate the empirical covar- §

iance function, determined on the basis of the observation § .

material. The actual approximations were produced in steps, . -
* ‘each step taking into account information with frequencies up §

to higher and higher degrees (so-called ‘stepwise collocation,’
cf. Tscherning [1974}). In the first step we used a set of potential °

- coefficients (Cy, ). Then a regional approximation was con-

structed using 1° X 1° mean free air anomalies; and finally, a

able point gravity field data (free air anomalies and deﬁec-
tmns of the vertical).

3. TERRA[N REDUCI‘IONS IN COLLOCATION

' The gravity field effect of the topogr_ap_hy and (contin-
gently) the isostatic compensation is adequately accounted for
by a simple ‘remove-restore’ technique, where not Titself but

r=7-7T, (1)

KR .:.-p.\e.-.w-uw@'n‘y.tﬁm

is approxnmated.
Here T,, is a potential generated by a mass model of the ter-

rain. To secure that 7° will also be a (harmonic) potential, T,

" must be the potential of a given fixed voluthe of mass, e.g., all

‘terrain masses’ in a given *square’ bounded by latitude paral- "
lels and meridians, Then T, will be harmonic outside the ter- {
rain masses and 7* a harmonic function (the ‘terrain-reduced’ |
potential) outside both the surface of the earth and the massj‘
modet.

i
In the collocatlon process we are thus usmg ‘reduoed obscr-'

: VathllS
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In principle, 7., can be generated by arbitrary models of the
terrain, but in general, we will expect the most smooth Tt .
when the most realistic height data and density distribution
As terrain model’ we can use the topography and the Airy-
Heiskanen isostatic compensation. The isostatic residuals
(isostatic gravity anomalies, topographic/isostatic-reduced de-
flections of the vertical, etc.) are known to be very smooth
both on the local and global seale. For height anomalies the
effects {,, due to the combined effect of the topography and

~ the isostatic compensation are generally small in contrast to
- height anomalies £, calculated from the visible topogra-

phy only. On a global scale, ¢.g., the variation of £, TP g
several orders of magnitude larger than the actual variation of

* the geoid, Thus the isostatic reduction should always be pre-

of just removing the visual topography. _
Furthermore the Airy-Heiskanen isostatic model is a realis- '
tic model of the earth's crust, easily allowing for additional
modeling of known geological density anomalies, as, e.g.,
sedimentary basins. The actual choice of the isostatic com-

ferred to the (often equally smoothing) alternative consisting

. pensation parameters (normal crustal thickness T (not to be '

confused with the anomalous potential) and crust/mantle den-

‘sity contrast Ap) is of minor importance when used for predic- -

tion. Conventionally, T == 30 km and Ap = 0.6 have ‘been
used, but values around 7 = 33 km and Ap = 0.4 are ‘more -

.-¢loseto the physical reality. :

As mentioned a fixed’ terrain mass model must be used to
‘generate’ T, This implies that it is not possible o use, e.g.,
topographic/isostatic effects calculated only out to a certain
distance from the station (e.g.; the Hayford zone O,, 166.7
km), but one must either take the global topography into ac-
count or, alternatively, only account for a fixed area in the re-’
duction process. The calculation of global isostatic reduced

quantities is faciliated by various isostatic reduction ‘maps

[e.g., Karki et al., 1961} and by expansions in spherical har-
monics of the topographic/isostatic reduction potential leg. - )

Lachapelle, 1975]. However, for prediction in a local area
(e.8. a 1° X I° square) the influence of the distant topography

is nearly constant, and therefore only 2 fixed area reduction " - .
should be necessary. The fixed area used should cover the

area of prediction with an appropriate margin in order to
avoid the possible ‘edge effects’ occuring when abruptly termi-

nating a model with mean heights different from zero (Figure .’
As an alternative to the isostatic reduction, we can use a re-
sidual terrain model (RTM), i.c., the deviations of the topog-
raphy from a mean height surface, defined by a coarse mean
height terrain grid (Figure 2) and a suitable interpolation pro- .

Fig2. Modeling the topography (left) and the residual topography (right) with rectangular pris:hs. In the RTM rédl._t_t:-

tion, masscs above th¢ mean elevation surface zre removed, while valleys are filled (prism density negative).
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- Fig. 3. Sectorization n the calculation of terrain effects. The'
- .haiched area is an example of an inner zone, where prid 1 is densified
-using a blC‘llblC spline mterpolauon. - -

o oedure, ep.,.a s1mple bilinear mterpolé.uon ‘The ‘coarseness’ -

‘of the mean height grid should be decided on the basis of the

. density of observations and the local topography. The advan-
‘tages of the RTM reduction compared to the isostatic reduc-
tion are significant computationally: there is no necessity for -
“considering any isostatic compensation at all, and as the RTM

have oscillating posmve and negative densities {corresponding

.. %o the ‘removal’ of mountains and ‘filling’ of valleys), the ef-
 fect of these will, in gencral, cancel out in 2 certain distance

from the calculation point. Formally, we car thus operate

" with 2 global RTM ‘without having to do the actual RTM re-

duction calculation cut to more than a suitable distance from
the calculation point. Moreover, as the formally global RTM

. . consists of balanced positive and negative densities, the effects.
. on ‘long-wavelenigth’ quantities such as, eg., 1° X 1° mean

© . gravity anomalies and potential coefficients will virtually be

- negligible if the RTM is sufficiently short periodic, e.g., de--
. fined as the topographic irregularities relative to a (global)

mean height surface of 10 X 10 arc min mean heights.
"The drawback of the RTM reduction is that we reduce the
area of harmomcny A station situated in a valley (Figure 2)

-will after the reduction be situated inside the smoothed topog-
" raphy, bounded by the mean elevation surface, The observa-

tion is thus reduced to its actual values inside the mass, where

“the gravity potential is nonharmonic. To be able to use collo-
" cation, we will thus have to change the reduced: observation to
-+ -the value it wold have, if the ‘outer’ potential was harmoni-

cally downward continuated to the observation point. We will

_' term this correction of the reduced observations, which are sit-
uated below the mean elevation surface, the harmonic correc-:

tion, Generally, this downward continuation of the outer po-

 tential is possible, as the mean elevation surface is very
smooth and the density of the masscs ﬁll.mg the valleys is -
- known.

An approxu'nate value for the harmonic correct:on can be

. found in the following way: consider a station sifuated Ak be- .
" low the mean clevation surface, As this surface is smooth and
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nearly constant around the station, the masses between the
level of the station and the mean elevation surface may nearly
be viewed as a Bouguer plate. By condensing these masses in a
mass plane just below the station, the potential outside the
mean elevation surface is nearly left unchanged, but now the
station will be situated outside the masses. The effect of this
condensation will be nearly zero for height anomalies and de-
flections of the vertical, whereas gravity anomalies will de-
crease corresponding to the removal of a Bouguer plate above
the station -and insertion of a new (mass plane) below. The

-harmonic correction for graw.ty anomalies is thus —41erAh
- . ‘where p is the density of the “fill-in’ masses.

In the fest predictions in New Mexico (sectionS), both -

fixed-sector topographic/isostatic reduction and RTM reduc-

tion (with the simple harmonic cotrection) have been used,

~giving nearly the same results, The feasibility of the simple

‘Bouguer’ approach to the harmonic correction is thus demon-

. strated.

4. CALCULATION OF THE TERRAIN EFFECTS

Classically, terrain effects have been calculated using a sub-
division of the calculation station surroundings in a series of
concentric rings, each subdivided in a number of sectors, such

sector to the total terrain effect (possibly mcludmg the isos-
tatic compensation) is easily. calculated using the relauvely
simple formulas for the gravity field quantities at the axis of a

" cylindrical {or conical) segment. .
For computerized calculations, with the topographic data

given in the form of point or mean heights in a grid, it is con-

_venient io retain the generally quasi-quadratic sector sub-

division. of the topography induced by the digital terrain

_model. The effect of a single sector must then be calculated

using the more complex formulas for the gravity field quan-

and due to the fact that detailed height information generally
only. is necessary in the vicinity of the calculation point, it is
adequate to use larger mean height sectors for the more re-
mote topography. This principle is illustrated in Figure 3. In

‘this paper we will term the subdivision pattern the sectoriza-
tion. From the assumption that the area under consideration -

is covered by a sequence of digital terrain models with in-

‘creasing sector Sizes (and, ideally, the coarser height grids sim-

ply having been constructed by averagmg_the finer grids), we

“will characterize the sectorization by a series of calculation

radii r,. Each r, represents the minimum distance out to which
grid number ‘4’ must be utilized. In order to “fill up’ to the

boundary in the next, coarser grid the average distance to the:
outermost calculation sectors of grid i will be somewhat larger '

that r;, as seen  from Figure 3. When the objecuvc of thecalcu-
lauon is a reduction, tahng masses in a given, fixed area into

‘account, the sectorization principle can still be used, but now
the effect of the last grid must be calculated precisely (o the
‘(often square) border of the reduction area.
It must be emphasized that the sectorization is only a calcu- :
. lation procedure aimed at speeding up the calculations and re- ! °
‘ducing the demand for detailed height information. The sec- ;
" torization must be chosen in a way not to degrade seriously
the accuracy of the calculation, as it (as mentioned in the pre- f
‘vious section) is essential that the same physical mass model i 15

used in all calculations for collocation.

¥

TN

© as, e.g., the Hayford zones [Hayford and Bowie, 1912). With
.an estimated mean height of a sector the contribution of the

-tities around a rectangular prism. To speed up the calculations '

S e,
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To speed up the calculations further, it is possible to use
* simpler approximative formulas when summing wp the contri- -

butions from the sectors, again with the same remark as for

_ 'the sectorization: the approximation error must be small in or-

der to reduce the ‘terrain calculation noise’ to a level prefera-
‘bly far below the accuracy of the later predictions. Owing to

- the sectorization, sectors far away from a calculation point -
" - will generally be represented by flat-topped prisms with a
" little height extent when compared with their sides, and the )

effects of such prisms are calculated approximately by the
gravimetrical formulas of a horizontal mass plane through the

.- prism center of mass, here termed the ‘condensed’ formulas, .
At this point, let us now collect the necessary exact and ap- - .
proximate formulas for the basic building element, the rec-

- tangular prisms of uniform density, for the most important -

gravimetric quantities. _
- Let the prism be situated as shown in Figure 4. We want to

calculate a gravimetric quantity L(T},) at the origin. For the
. .vertical component of gravity we get L :

. wheré Gis the gravitional constant and p the constant density
* of the prism. Integration gives [Jung; 1961] B

y+ x+r

l-' 2y LY
X 1O, " Q,
_gx+rxl }’.‘ t":’x-_i-_r,l =
' xyplF | 12y :
— [l zarctan Z£ } (15)
- ‘?Tr Xy ‘-Vn. &f]

- Note that this expression is simply a sem over the eight cor-

ners of the prism, the individual corner terms often being can-
celled by similar terms in adjoining neighbor prisms.
" To get the condensed approximation formula, we have -

. ’ . . x3 ) Y2 Z,, Do . o
g = Gk i .;;-_dxdy (16)
. o x| £ 4] ' ' o .
' =tz _ ré(xi#{-f'-;-‘zm?)'ﬂ

tegration gives .

whér'e * = p(z, — z)) is the surface mass density. Simple in-

: xy X2
arctan —-

. 8&" = —zem

an

Exact formulas for the deflections of the vertical are simply
_‘obtained by shifting the coordinate axes, so that (15) gives the .
horizontal gravity components: Let 0. = O&m(X1s X2 Y4y Vou Z1y

" 7,). We then have
- ba= 7 982l 22 13 X2 11 3) ERRE)
. l - . : ) : . .u
N = ; 'ag,_.,.(y_,, Vo 21y 2y X1, X)) ¢ (19) -

The cqnaensed formulas can; of course, not be obtained
this way, but simple integration gives o T

Sy T e T

R

P | | R -’ )
Z '

X

Fig. 4. Rcctanéu!a: pism. In the condensed approximation the

_ prism is replaced by the mass rectangle z = z,,.

. Gk X3 L (20)

L I.= _— ¥z

: S...._. y losx”h— ..

L y+r,,= :
X ) Y y+_..r_‘l -’fl_ . o

" The geoidal effect of a mass prism is simply derived from

the potential by Bruns formula {,, = T, /y. The exact formuia,

* given by MacMillan [1958], contains a total of 36 log or arctan
. terms. It will not be shown here, as our testing of this formula _
. -against the condensed formula have shown that for all practi-

<al purposes the condensation approximation error is negli-

. gible, being typically only in the millimeter range for moun-
. :tain_ous-areas with 1000 to 2000 m mountains. . :
. The condensed potential formula is dérived from

: ’ f* -
T,,.’=Gx‘/ f —dx dy : 22)
. - . x’ y. r;. . 3

" A similar integral is obtained when (14) is integrated one
time with respect to z, and we therefore similarly get

Xy [z | ¥

T, = G .
o 2. ),

x.log U+ +ylog(x+r)—z, arctan

¥
_ e : o @3)
- Owing to the relative insensitivity of the geoid to local topo-

- graphic variations, it is often sufficient to use the simplest ap-
_proximation formula for the potential, régarding the prism as
:a sphere having the mass of the prism. This especially. is the -

case when evaluating the second (indirect) term of the frec air

ano‘m'a_ly expression . - : :

' . _ 2.
r

Ag=——=—

az -

where.the first tefm is dominating except on a global scale,
-In order to study the errors occurring when approximating

" the rigorous prism formulas with the corresponding mass
- plane formulas; consider a station P, situated in height H at 2
distance r from the center of 2 square sector with side length s -
‘and topographic height k (Figure 5). The relative approxima-

tion error for the gravity, the radial' component of the deflec-

tion, and the height anomaly generally attains its maximal -
‘value for H = k/2 and when a prism corner is oriented toward

P. However, with the typical flat-topped prisms in the distant
© sectors in the terrain caloulations the approximation €rror is -

T. @)
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roughly the same in all dnrectlons and for all helghts Hin the

. range zero to k. The relative approximation error is therefore
- primarily. determined by the two dimensionless parameters r/s.
 and k/s. Error curves for P situated centrally perpendicular to -

a side and in height H = 0 (or H = 1) are shown in Figure 6.
With a given acceptable error and prism geometry (h/s) a

- minimum distance to which exact calculatlon formulas must :

be used is easily obtained. -

Let us now return to the scctonz.atxon, in pnnmple, the
.choice of sector size s versus the distance r to the computation-.

* point. In order to optimize the calculation the .contribution -
- from each sector should be of the same order of magnitude, of
course under the restriction that the sectors must not be so big .
so that the constant height approxunauon_o_f the sector topog-

raphy ‘becomes invalid. Let us consider a simple example

where wé want to calculate the total effect of the topography -

above sea level in the case of an altxplano with average height -

. k. Consider 2 sector in distance r with sxde length 5. We. will
_ then in a first approx:matlon have - .

T, oc—.«:z

2 5 5
where ¢, is the radial deflection component In order to get
equal eﬁ‘ect proportional sector we must thcn have
e Tois0cr® '
R L _ (26)
) 88 ;s}x L : ’

" GRAVITY

I' T T — |='h/5

f e

" 'DEFLECTION

as shown in Figure 7, together with the conventional Héyford
and Hammer zones primarily used in gravity terrain ‘cortec-

tions. The above equal effect gravity sectorization results in

very large distant sectors, which, of course, should be avoided.
Our experience have shown us that in nearly all types of ter-
rain effect calculations the classical s oc r sectorization is prac-

tical and gives good results. When using the earlier mentioned 3§

sequence of coarser and coarser height grids (Figure 3), a cho-

*sen r/s ratio is simply used to give the minimum distance r,, to

which grid i must be used. Note thata rocs sectorization cor-

- 'responds to a horizontal line in the approximation error
- graphs (Figure 6). For the quasi-Hayford r/s = 1.5 we see '

from the figure that the 1% error level is obtained for A/s = 0.2
and h/s = 0.4 for gravity and defléction, respectively. Hence
the mass plane approximation can be used with an-error of
less than 1% from distances of around 5 4 and 2.5 h, respec-
tively. In our computations of terrain effects on gravity and
deflections in New Mexico, described in the next section, we
tested sectorizations with r/s in the range 1.2 to 4. Values
around 1.6 proved to be sufficient {Forsberg, 1980].

. Up to now we have implicitly presupposed the flat earth ap-
proxnnauon To account for the curvature.of the earth we

"have two alternatives: either simply to ‘suppress’ the prisms

the superclcvauon ‘Az = /2R below the horizon, retaining
para]lel prisms or, as is the only possibility in global calcu-

lations, let. the prisms be oriented along the local meridian

and vertical. In this case one has to calculate the complete at-.

traction vector in the evaluation point P and subject.it to an
orthogonal transformation in order to get either the grayity or

" deflection components in P. This, of course, significantly in-
creases the calculation time for cases where only one of the
quantities is wanted. Formulas can be found from Ehrismann -

et al. [1966) (only gravity) or Forsberg {1980], including the

. sphencal effects on the isostatic compensation. In our calcu-

lations in New Mexico, which covered at mosta 6° X 7° area,

R the first alternative {parallel suppresscd pnsms) provcd to be, '

satisfactory.
In many approximation methods, such as stcpwasc colloca-
tion, a spherical harmonic éxpansion is used as a first approxi-

mation to the gravity potential. We therefore also need for-

mulas for calculating terrain effecis on potential coefficients.
Consider a mass prism of density p at latitude ¢ and longitude
A, extending Ad and AM between heights k, and h,, respec-

tively. Let the anomalous potential be cxprgssed in fully nor-

POTENTIAL -

Fu20 Wk 6 8 0 2 Wk

6 .8 1.0 . .é'._‘.é'.aﬁo

i Flg 6. Error curves for the relative approxunauon €ITOT, €Xact Yersus cnndensed prism formula, H = 0, central symme-
try proﬁlc .
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- S=I‘1/‘2

10m 100m

1km

r Y > r
10 Y 100 ki

(sohd arclec) zome: systems, [Ha;fard and Baw:e, 1912., Harmner, 1939}, -

Fig.. 7. Avcrage side length s and mean radius r for the cylindrical sectors of the Hayford (open cu'clec) and Hammer L

R mahz.ed sphencal harmomcs, of. (2} The coefficients of the ex-
' .panslon are given by : ,

G, ‘ R
}ApdV (27)

where Ap is some density distribution of the earth generating

-'the anomalous potentla.l Isee, e.g., Heiskanen and Moritz,
1967]. For the mass prism contnbunon we get {Lachapelle, _
1975) ' :

".C'ul... H'_... -
| } (2:+1)MR’fmp fsin ¢

{mm"' ’ iy XD G
\ sin N os ¢ g o _ @8 -
CUM - [ sm?x |

e } e+ I)MR‘P i g) { in }

cos¢A¢A?\

R4,

<008 6 Ap A (R + AP — R+ R)*™  (30)

" due to'the slow variation of the integrand over the relativeiy
small (Ad, AA) sector. In RTM reductions and fixed-area iso-

static calculations with reduction areas of less than 5° X 5° we
have found completely n_egligible potential coefficients for de-

~gree and order up to 36. This is, of course, not the case for
. global isostatic reductions, where the eﬁ'ect on all eoefﬁcxents
-is significant [see, ¢ .8, Lachapelle, 1973].

Finally, we consider the effect of the local station surround-

ings, say closer than 1 km to the station. This local effect is of-.

ten very big for gravity anomalies and deflections. Around the

calculation station we densify the finest digital terrain - model .

| rf+= dr @)

"usmg blcubxc spline’ mterpolauon, but sull there wi]l always
. be a discrepancy between the station height (supposed to be
on the ground) and the interpolated terrain model height. We
have either to move the station up/down to the model

‘ground’ or to modify the terrain model in order to force it to

glve the correct height at the station. Numerical experiments .

using the data from New Mexico have shown that the first
‘principle can be used for deflections and height anomalies,
The gravity effects must always be calculated by meodifying

" the terrain model (e.g., by some additional constant in an'in- -

ner zone), as the effect is highly correlated with the station

- height, the *discrepancy error’ to a ﬁrst order bemg simply the

Bouguer term ZwGpAh

5. PREDICTION OF DEFLECTIONS OF THE VERTICAL
AND GRAVITY ANOMALIES IN THE WHITE
SANDS AREA OF NEW MEXICO

The various terrain reduction methods were tested in two

"mountainous 1° X 1° areas in New Mexico, where known de-

flections of the vertical and gravity anomalies were predicted

. from (primarily) a set of gravity anomalies, spaced ca. 10 km

apart, bsing the method of stepwise collocation implemented

- as described by Tscherning [19785). All data were transformed

to the geooentnc reference system WGS.72. As height data
0.5 x 0.5 arc min point heights were used, and the calculation
grid sequence was constructed from this detailed digital ter-

rain model by using simple averaging. All data were kindly

put to our disposal by the national Geodetic Survey, which
also provided us with & datum shift NAD 1927 to WGS 72
valid for the White Sands area. '

The two test areas are situated between latitude 32° to
34°N and longitude 107° to 106°W. Both areas ar¢ character-

. ized by a N-S trending mountain chain, the Organ and San

Andres Mountains, rising 800-1500 m above the surrounding
‘plateau in a height of 1200-1400 m .(Figure 8). To the east

-~and west of the arcas, higher mountains are rising. Geologi-
cally, the areas consist primarily of young Mesozoic sediments
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. with some late Tertiary volcanics. Woolard {1962) indicates

formation densities in the range 2.57-2.69 g/cm? for the sedi-
ments, and it thus seems that the standard density 2.67 g/cm?
is a reasonable reduction density. We have used this value

N {throughout. Observed point deflectionis of the vertical and

gravity anomalies were predicted using stepwise collocation.
As a first step, the GEM 10B spherical harmonic coefficient
sct was used, and as second step a set of I° X 1° mean gravity
anomalies was used, In the last step a local approximation was

- constructed using gravity anomalies spaced ca, 10 km apart, in
some cases supplemented by a few deflections (40 km apart), .

The distribuﬁoz_l' of the gravity and deflection stations is
- shown in: Figures 9 and 10. In each block, roughly 100 gravity
anomalies are used in the prediction. The stepwise collocation

prediction was performed analogously to our earlier investiga-

‘tions {Tscherning and Forsberg, 1978), For the last prediction

step, local empirical covariance functions were estimated for
" both gravity and deflections and subsequently used when

+ choosing the reproducing kernel X to be used in the computa-
tions, ' ' o

The predictions were performed with the original data as

well as with data reduced for the influence of the terrain ac-

cording to the various methods described in sections 3 and 4,

. The reductions treated in the following will be abbreviated as

ISO  fixed-sector topographic/isostatic reduction for a 6°

s Aot 4 1 AT

. .'.,”'l:“
{7

{7

4,
4,

c . : _ SE
‘Fig. 8., Northern (iop) and southern (bottom) I? % 1° test areas, 32° to 34°N, 107° to 106°W; I X 1 arc min mean
. oo . . heights. . o : ‘

X 7° area surrounding the test areas; Airy isostasy
with crustal thickness 32 km and density contrast
0.4 g/cm® is used;

" TOPO  fixed-sector (6° X 7°) reduction for the visible to- -

pography above sea level (thus, except for the fixed
sector, corresponding to the classical ‘refined’ Bou-

. guer correction with terrain correction);
RTM30 RTM reduction with the mean topography defined
" by a bilinear interpolation scheme in a 30 X 30 arc
min mean height grid; residual topography in a

fixed 3° X 4° sector taken into account;
RTM15 RTM reduction with IS X 15 arc min mean height
' grid; only residual topography out 10 a distance of

60 km is taken into account.

. Both the point observations and the mean gravity anoma-
lies were tetrain-reduced according to the chosen principle. As
¢xpected, the RTM effects on the mean gravity anomalies
proved to be very small. 1SO-reduced deflections of the verti-
cal are shown in Figure 10, and Table 1 gives a survey of the
statistics of the original and terrain-reduced observations for
the combined area. From the table it is seen that the major
part of the variation in the observed deflections and free air
anomalies is due to the effect of the isostatically compensated
topography. The actual choice of isostatic parameters proved
to be of little importance in relation to the variation, but Some
isostatic effect should always be included to avoid the bias in

WER e, L
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- Fig. 9. Distribution of free air anomalies. Squares md.tcatc data used in thc pmdlcuon, crosses show comparison sta-
 tions, where predicted values are compared to'the obsctvat:ons Topographxc helghls shown Wlth 200-m oontour interval,

‘the gravity 's.uomalies’ (and height anomalies, too) .occurring
. when only removing the topography (TOPQ, Table 1). For

“the RTM reductions the variation is seen to increase when a -

finer height reference model is chosen, in correspondence
. with the fact that the RTM reduction only takes into account
. topographic variations with shorter ‘periods’ than the refer-
“ence model mesh size, :

Table 2 shows the combined results of the predlct:[on in the
two areas. A total of 110 deflection pairs and 150 gravity (free
air) anomalies were predicted and compared to the known
values. In column ‘A’ a total of 192 gravity anomalies and 18

deflection pairs were used as observations in the last colloca- .

tion step, column ‘B’ shows the results obtained when omit-
ting the deflections, and finally, column “C’ shows our results
when only the 1° X 1° mean anomalies and GEM 10B are
used as gravity field data. From the table it is clear that a re-
markable jmprovement in the collocation prediction results

accurs when the effect of the terrain is taken into account. The -

. prediction rms error decreases with a factor of nearly 3 for
_both gravity and deflections when terrain-corrected data are
. used. The role of the topography is further illustrated by ob-
serving that we get better deflection prediction results using
the ISO reduction without any local gravity information (“C’)
. than by using all our gravity field data in the traditional collo-
*cation prediction neglecting the topography! (Investigations
by Fischer and Wyatt [1974] in the Pacific Ocean further con-
firm that cxcellent deflection prediction resulis may be ob-
- tained solely based on topographic mformauon) o
The RTM reductions are seen to. give results’ cqually as

' . good as the topographic/isostatic reduction, and this supports
'-'both the smple ‘harmonic correction,’ introduced in section 3
and the suggestion that the reduction may be calculated only -

out toa fixed distance from the station without violating the
harmonicity, When no local gi‘avuy data are present (‘C’), the
RTM reductions, of course, give poorer predictions than the

‘complete topographic/isostatic reduction, again due to the -

" fact that only a part of the topographxc sngnal‘ is’ taken into
account. '

From Table 3 the very small influence of the isostatic pa-'
rameters in the predlcuon is seen clearly. Note that the omis-

sion of any compensating masses only degrades the results -

slightly. This is quite remarkable in view of the biased grauty o

anomalies (Table 1).
Fma.lly, Table 3 shows the ISO predacnon results when a

5 xSarcmmmcanhelghtgnd(ca 9 X 8 ki sector size) is

-used as the most detailed digital terrain model. Deflection re-
_sults are most markedly degraded but are still much better

than the results obtained if the topographic information is ne-
glécted altogether. For the gravity stations the results are re-
markably good. It must be remembered that we modified the
terrain model to give the correct gravity station height, so the
reason for the only slight improvement of predictxon results
seen when using detailed topographic information is that the
simple Bouguer correction generally is 2 good approximation .
to the gravity effect of the topography. The approximation er-
ror (the gravimetric terrain correction) is generally small in
comparison to the Bouguer correction itself, but it is well-
known that it m.lght be very large at stauons thh extreme lo-
cations and that very detailed height information is necessary
for its evaluation. One should therefore always use the most
detailed digital terrain models available when terrain reduc-

-ing the gravity anomalies.

Other authors have in recent years pubhshcd rcsults of de-
flection predlcexpenments in the White Sands area. Although
comparisons of results are nearly impossible due to the differ-
ent data involved, a short survey is presented in Table 4. It
seems that stepwise oollocatton plus terrain reducuon gives
very good results, : -

6. CONCLUSIONS
Above we have described some pracucal methods by which

'topographlc information-in the form of dxgual terrain models

can be used in a way consistent with gravity ficld approxima-
tion methods such as collocation. A very significant reduction
of the prediction error -occurs when accounting for the effect

. of the terrain in mouatainous areas. Qur investigations in




R PPN

7852 FORSBERG AND TsCHERNING: Usg o HEIGHT DATA IN CorLocaTION

106°, 0 107°

; 'au . . . . . . ) . . : .‘ . o
- Fig, 10.- Observed (left) and terrain-reduced (ﬁght) deflections of the vertical. Note the influence of the main mountain
.. chain, Deflections marked with dc_mble circles were used as observation data in the A’ prcdictions.r - ’

Mexico show that it is possible to predict deflections of  arc min point heights. It is thus seeq that when appropriate

- New
the vertical and gravity anomalies with an accuracy of respec- - methods are used for accounting for the topography, the

' . 'sub;ract_ing terrain effects calculated on the basis of 0.5 x 05  racy obtain_ed_' in lowlands,

. TABLE 1. Observed and Terrain-Reduced Defiections and Gravity Anomalies, New Mexico'

£ arc sec _ " marcsee . . " Ag, mGal
“Terrain - _ . Standard . " Standard . ‘ Standard
.. Reduction ~  Meag Deviation ' Mean Deviation ‘Mean . Deviation
‘. Nome . =L g ~443 5q7 o7 ~995 - 26.65
T 180 T2 L52 =g 335 12.06 1156,
-~ TOPQ - 4.65 07 =657 . - 2942 . =152.9¢6 1218 -
" RTM30 -2.03 1.69 - =456 399 - =573 15.67

RTMis - 7 187 ~-4.57 - 425 ~7.26 18.37
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TABLE 2. Col.locatlon Prediction Results for the Two 1° X 1° Areas, New Mexico

-+
¥
3
N
i
H
]
3
M
i
Sy

Used Point Observations
. A ' B . C
i Gravity plus Deflections - Gravity Alone None .
| Terrain " Standard Standard Standard
Reduction Mean’ Deviation ‘Mean Deviation ‘Mean Deviation’
" None o
¢ .30 251 ~0.07 250 - =019 - 289
1 . =053 2.58 0.06 298 0 068 582
: 124 11.37 " 152 1048 . - =237 30.67
; 150 o o : ; o L
3 1 .. 031 0.84 025 08¢ - 0.24 148
7 0.00 " 0.96 0.44 Sl 050 2:40
ol Ag 022 394 0.24 S 370 -~3.39 12,79
i RTM30 _ e T
i ¢ “0.13 096 —0.20 - 1.12 -0.26 o L79
3 ] : ~0.30 1.00 =0.21 L13 -0.14. - 336
Az 0.30 4.37 0.56 373 268 15.49
s RTMILS : o i R
| g . 018 . 0.88 ~0.10 102 0.20 154
i TN —0.09 1.00 -0.16 1.19 0.85 © 340
S - Ag 023 3.89 0.28 409 ~013 1436 -

Predmuon ba.scd on GEM .10 B, 1° X I° mean gravity anomalws and the local data mdmated

TABLE 3. Prediction Rﬁults (‘A') for Varying Pa.ramelers in the Topogmphnc/lsostauc Reducuon .

A p b e P A G B RE Y

£, arcsec M afcsec Ag, mGal

= . Standard Standard _ Standard
" _ Mean  Deviation = Mean = Deviation . Mean - Deviation
b : : " Crustal thickness 24 km .30 085 =001 . - 0% - 022 - . 397
S . (180} .31 0.84 0.00. 096 . . 022 3.94

. - : . Crustal thxckncss40km 0.32 0.84 0.00 0.96 0.24 393
S . " . Nocompensation (TOPQ) - 0.61 L0092 =0.15 1.13 029 4.26
ol S - - " 1SO reduction _ 0.20 1377 =03 - - 142 0.19 42
SR using coarse 5 X 5 arc min - : ' i

* mean heights only

" As tdpograpﬁic reduction method, we récommend the Howcver, even when rough height data (suchas5 X 5 arc min

- RTM method. It has the advantage over the topographic/iso-
static reduction methods that a fixed area is unnecessary in
the calculations, and becaiise there is no need for any sort of
isostatic compensation masses, the calculation is also quicker

mean heights) are used, substantial improvements occur in the
results. Thus one should always use the terrain reduction con-
cept in mountainous areas even when huge areas or the lack
of maps prohibit the construction of reasonably detailed digi-

as fewer. prisms are involved in the ‘building’ of the terrain

3 tal terrain models, this being the case in areas such as Green-
: \ .- 'masses. The densest possible topographic information should

land. (An example of geoid prediction in Greenland using the .

be utilized in the terrain effect calculations, corresponding to prcscnted oonccpts is gwen by Forsberg and Madsen 11981]) ‘

the well-known fact that the local topography near to the sta-

tion gives a-dominant contribution to the terrain effect. This is Acknawledgmem The support of NATO research grant 1378 is
especially true when calcﬂatmg gravuy terram corrections. .gratefully acknowledged. ‘
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TABLE. 4, Defiection of the chcal Prcd:cuon Results, Wlute Sands Area. New Mexico

: Number of
‘Useof

Predicted ' rms Error, arc sec
SE L - . - Topographw -Deflection
1 .. Source Approximation Mcthod Gravity Ficld Data Data Pairs £ -
4 - This work . stepwise collocation - ‘GEM 10B, 1° X 1° mean yes -2 15 2.5
g‘% N - ' © .anomalies R .
AR N TR R S as above plus gravity yes Sz 0.9 1.0
B % e R : {spaced 6 arc min) and
. l \ ; o R ) . deflections ) . )
1 Morrison [1977] least squares prediction 50 deflections Cno’ 100 L2 - id
%o Sclwarz[1978] - Vening-Meinesz GEM 10 plus all available yes 441 14 2.1
i : tavil
-4 " Lachapelle and - - GlgiM 1_oyB : yes 68 2.0 34
1- . Mainville [1980] least squares prediction GEM 10B plus 10 sur- yes 68 1.2 2.1
21 - : o _ rounding deflections _ i A
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