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1. INTRODUCTION

The set of functions harmonic in an open set and
regular at infinity constitute a linear space. We
will denote the open set by 2 and its boundary by w.
A subset of this space may become a Hilbert space by
the introduction of a suitable inner product. We will
denote the inner product of two functlons f and g by
(f+g) and the corresponding norm HfH = (f,f).

A Hilbert space of this kind will contain a numerable,
complete orthonormal set (Vi' 1=0,1,...,®), i.e.

every function f may be expressed as a series
(1) f = £ a.v.

v 2
where a,¢ R £ a’ < = and (Vi'vj) = 8, ..

The Hilbert space will have a reproducing kernel,
i.e. the identity transformation (I) of the space
into itself may be expressed by

I(f) (@) = (K(-,Q) ) = F£(Q),

where @ is a point in 0.
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The reproducing kernel X(P,Q) is, as it appears by
the notation, a function of two variables. It is
symmetric, and is, for one of the variables fixed, an
element of the Hilbert Space. We indicate, that one
of the variables are fixed by writing a dot instead
of the independent variable.

The reproducing kernel may be represented by

8

(2) K(B,Q) = ] V(2)-V.(9).
Using the linearity of the inner product and the
formulae (1) and (2), we easily see the reproducing
property:

8

I(A(@) = (K(P,Q),f(P)) = [,

(A

Il t~3

V. V. ’ LV,
o e T aJVJ(p)]

©o

= . V. . . . = . . =
I aa[igo (@ 7P,V o) | L et @ = s,

Example 1.1, The Dirichlet norm.

~.When Q has a sufficiently smooth boundary, we nay
‘introduce the Dirichlet norm

Hsz = f ve)© an ,

which correspond to the inner product

(frg) ""'fo‘ Vg df

v = . . .
(VF Dx1f + szf + Dm3f, Dxi the partial derivative,

Dn will below denote the partial derivative with
Tespect to the normal » to w),
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In this case, the %eproducing kernel is the sum of

the Green's and Neumann's functions for the set &,
K(P,Q) = G(P,Q) + N(P,Q).

Using Green's identity and the fact that D, G and W

are zero on the boundary w, we get

(er('rQ)) = J Vf'VK(‘,Q)dQ
=“J DnK(',Q)-fdw ="J DnN(',Q)'fdm = f
W W
or =—J K(-,Q)-andw =-J G(-,Q)andm = f,
] W

In case { is the open set outside a sphere with cen-
tre at the origin, the usual solid spherical harmon-

ics is a complete basis. The functions

&

are easily normalized because

+1 _
-[sij(e,x) or Rij(e,x)] cf. [1] (1-73)

] R 2 .
it J V{[F] Sij(e,l)] dg = R(1+1).

Hence the reproducing kernel is

2 yT+1
K(PrQ) = ! [R ]

izo RE(z+1) |p.r’

Z

{S,I:J-(B,MS,&J-(B',?\')'H‘?ij(e,l)'Rij(e',l')],

7=0

where the spherical coordinateswithout mark refer to
P and the others to 4.
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Using the summation formula [1], (1-82) for the sur—
face spherical harmonics, a more compact expression

can be conputed

o 741

_ g 2141
K(P,Q) = ] 5 37 g (t),
=0
}?2
where s = o Pi(t) is the Legendre polynomigl of

degree 7 and ¢ = cosine to the spherical distance (¥}

between P and &.

The series representing the reproducing kernel can
be reduced to a closed expression, cf. f3] P.26

2 1
2,0 = 3+ 1 o2,

2 4
where L = (1-2s5t + s )2,

In a Hilbert space, the values of linear functionals

may be expressed bv
L' () = (F,1).

where 7 is a uniquely determined function. This
relation between the functional 7' and the function 1
defines an isometric isomorphy between the Hilbert
Space and its dual space. For a reproducing kernel
Hilbert space, thisg mapping may be expressed using
the kernel,

LS = 1V ((-,9),7(Q)) = (Z'(KC,)) , 7(q)) (2,7},

i.e. 2(P) = L'(K(.,P)).

Because this mapping is isometric, we can find the
norm of 7' as an element of the dual space:
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2|2 = J2r |I2=(1 'k (P,Q),L'K(R,Q)) =
= 1'(1'(XK(P,Q) ,K(R,Q)})) = L'L'K(P,R).

Hence we will find the sguare of the norm of a linear
functional by applying it on the reproducing kernel
one time with respect to each of its variables.

2. THE COLLOCATION PROBLEM

In a reproducing kernel Hilbert space a particular
type of approximation problems may be solved in a

unique and very simple manner.

We have measured some gquantities m., i=1,...,n relat-
ed to the anomalous potential of the Earth, 7. Sup-
pose these quantities may be expressed as the values
of certain linear functionals lé operéting on T:

Z%(T) = m., 1= 1,000

i
We then want to find an approximation to T, (noted E),
which agrees exactly with these measurements,

~

Te M = { TIIi(T) = my, i=1,...,n}

and which has the least possible norm. The deter-
mination function 7 is called the problem of ("exact")

collocation.

M is a subset of our Hilhert space, and we want to
find the element, which has the shortest distance
from the harmonic function identically equal to zero.
Now, note, that the subspace parallel to ¥ (i.e.

containing the zero-function) may be expressed by



88 C,C.TSCHERNING

M = { T|Z%(T) = 0} = { T|(Zi,T) = 0}.

The geometrical interpretation of
the collocation problem.

The function ﬁ, we are looking for, is the inter-
section between the set ¥ and Mé (the orthogonal
complement to M in the Hilbert space).

The space MO consist of all functions orthogonal on
the functions ;. This means, that Mé nust consist of

all linear combinations of the Zi’

n n
d = ; = ' »
Mo {T]T ‘E ailif aiE‘R} {T[T 'Z aili(K),aie:R}.

=1 =1
The intersection between these two sets is deter-—
mined by solving a set of linear equations having

Qs 2=1,...,n as unknowng:.
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1(;-(.’11) =m1?- ¥ j=1’-.arn

(3)

LILNK) = m,
1717 J

3,
e~
2

7
1j{i£1aili(K)] -

Theorem, The function

. n
T = ) allK

1=1
is the solution to approximation problem,

which has the least norm.

Proof. Let us suppose, that we had two different

solutions T,U. For UO = [/-T we get

1. U, =0 for all T

!
T

Using the reproducing property of K(P,Q) we get

?

[}
o]
(o}
o~

! -

N n
! -— ! —

1’:..

For the square norm we then get
(U,U)=(T+UO,T+UO)=(T,T)+(UO,UO)+2(UO,T)
= (T:T)+(UO,UO) z (r,7),

i.e. U muast have a norm greater than 7.

Using the representation
N n
= ! .
(4) T(P) ££1 a 11 {K(,P))

we define the prediction of a gquantity p = 1'(T),
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4

which is the value of a linear functional I’ applied
on T, to be
n
- = ! = ? !
B o= 1"(T) = E a ' (1K),

and the estimated error of prediction to be the
square of the distance of the associated function 1

from its projection in the subspace MO:

12_.. 2_rrTrf"1rr
v = Ll - {2z tx} (22" {2721k

' V(1Y)
hAO

Fig. 2

The error of prediction

In this wav we have a measure for the error of
prediction, which is zero, when 1' is a linear combi-
nation of the functionals associated with the measure-
ments (Zi)' and which gets its maximal value when Zf
is orthogonal on all Zé, i.e. when Z'ZéK = 0. Because
of the well known isomorphybetween a reproducing
kernel Hilbert space and a stochastic process, we
will call the value of ZéZ;K the covariance

between the two functionals. Orthogonality is then
equivalent to independence.

3. WHICH KIND OF HILBERT SPACE CAN WE USE?

From the relation (4) above, we see, that the
solution to the collocation problem depends on the
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reproducing kernel and hence on the Hilbert space.

In case we should choose between different Hilbert
space, we would naturally select the one which gave
the "best" predictions. We could also ask for a
Hilbert space, giving estimates for the error of
prediction, which were near to the observed mean

square prediction error.

But before we get the predictions, the reproducing
kernel, the covariances ZéZéK etc., must be computed.
Hence we will try to find a Hilbert space suffici-
ently simple, and see how good prediction results we

can get.

We shall restrict our considerations to a few types
of measurements, which correspond to the following
(linearized) functionals:

Point gravity anomalies in a point P in Q (P has

spherical coordinates »,¢,A and a reference gravity
¥

2
t —_ - —
(5) ZAg(T) = DrT pr T(P).
Mean gravity anomalies Ag over an area g of total

area A:

= 1 '
(6) ' (1) =1 f L4y (T da.
Ag z

The latitude component of the deflection of the ver-
tical in P:

(7) Zé(T) = —D¢T . % .
The longitude component of the deflection of the ver-
tical in P:
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i
b

L}
(8) Zn(T)
The heightanomaly p:
1 -
(9) Z¢(T) 5 o

And finally the coefficients of T developed in the

series (1)
Zé(T) = (T,Vn),
which e.g. for the Hilbert space of example 1.1 is

Rn+§ 1 _
t = .
(10) 15, (T) = | V-7 o 5 (6,0 |dn .

“ nt

Example 3.1. Collocation using observations of type

{10} . In this case the normal equations (3) become

very simple. Let us suppose the coefficients e, to e
have been oObserved:

n

n
Y} oa llllKk = e, , F=1,00.,m.
i=1 v I J

Using the orthonormality we get

Z'-K=Z£ V.P-V. ]_—'V.
] g ¢£1 ; (P)V.(Q) ;
or
1 . 0
{a1,...,an} E "~~£ = {01,...,cn} ,
Ol l.1
i.e. a. = ¢. for all <.
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The solution to the collocation problem becomes

{naturally) the finite series
- n
Tf—“EcV

Example 3.2. Collocation using observations of type
{5) - (10). We have observatlons c—{cq,...,cp}
type (10) and d= {dT""'d 1T of type {5) - (9),

p + g = n.

The normal equations (3) become (as a rough sketch):

r 2 - 3 r O r 3
[FCKJPXP [?éZéK}qu [a] [e]
3 > A >+ or
2
[Zdléé]qXP [ZdK}QXq Lb] [4]
g )| J | )
shortly
A B a a
g7 ¢ b d
which is

Aa + Bb = ¢

B a + Cb

i
£

Again we have A = I, the identity matrix, and we get

Bb = ¢ - ¢
and hence
8%e - BTBb + b = 4, or

(¢ - B7B)b = d - Ble.
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We note that the elements of B are Zé (Vc ) and

hence * J
T, _ ' .
(11) B B = {Ld.lé.{ E Vk(P) Vk(Q)]}
7 g ‘k=1
and
G2y -8 ={1r 1 [T v.ev.
d."d.\.. z A !
r g ti=p+]
T = -
(13) d-B e = d z cilévi.

Hence we have reduced the collocation problem to a
problem in a Hilbert space with the one dimensional
subspaces corresponding to Vi’ 2=1,...,p removed and
with a new reference potential, i.e. the approxima~

tion Eo of example 3.1.

From the two examples, we may conclude, that it is an
advantage to use the same orthonormal system in the
Hilbert space as the one used e.g. in satellite

geodesy.

The main problem in the practical application of
collocation is the computation of the coefficients of
the normal equations (3), the covariances ZéZ;K. In
case the reproducing kernel may be represented by a
closed expression as in example 1.1, the computation
is much facilitated. The properties, which made a re-
presentation by a closed expression possible were

(a) the set @ was equal to the set outside a sphere,
(b) this set is rotational invariant, {(c) the inner
product was rational invariant, (d) the solid spher-
ical harmonics were orthogonal on each other and (e)

the normalizing constants of the harmonics are deter-
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mined by a simple rational function of the degree
only ((2n + 1)/(n+1)).

We will then in the following limit ourselves to
Hilbert space of functions harmonic outside a sphere
(radius R), and which have a rotational invariant
inner product. In this case the reproducing kernel
can always be expressed by

2 n+1

(14) k(r,q) = o, 8 P (t).

4

fr~318

0

The constants di are called the degree-variances,

Example 3.3. Computation of the covariance between

deflections. The computation of the coefficients of
the eguations (3) are simplified, when we use a
rotational invariant norm:

We put

K(P:Q) = k(s,t) ’

indicating that X only depends on s and ¢t = cos V.
For the deflections of the vertical we then get

1

! = - . .
(15) LR = Dyt - Dk - g,
= - . 1
(16) Z;](k) = Dkt Dtk g,.cos ¢ !
(17) 1110, (k) = =(D2t.D k4D, £D%k) 1y , ete
grg! ¢ t ¢ t vy )

Thus, in this case we can use Dtk and Dik both in the
computation of the covariance between deflections of
the vertical and between deflections and height

anomalies. For more details see [3].
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Example 3.4. Computation of the covariance between

gravity anomalies.
Using (5) we get

z t

n+1 _n=1 _ nt+l
Ag[s P (¢)) = s"TP(¢),

B
2
because g = __E__T .
r

Hence

' — -
(18) Lig k) = £ % 9,
and

(19)Zig(lég,k) = )

As mentioned above, it is possible to obtain a closed
expression for the reproducing kernel when for
example the degree variances ci are determined by a
simple rational function of n. There is a relatively
simple relation between a kind of scalar products and

a kind of rational functions parameterizing 02. When

(f.g) = J (¥ o%.0% )an ,
o

where o is a multiindex symbol of order m, the ration-
al function parameterizing oi is of order 2(1-m),
(see [4]) and cf. example 1.1, where ae{1,2,3} and

m=1.

We have here decided to consider quantities, which
are derivatives of order zero or one of 7. Let us
therefore consider norms, which minimalize the vari-
ation of these quantities, i.e. the second derivati

ves of T. a is hence of order 2 and Oi will vary
like n~ 2.
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Using example 3.4 we note, that in case 02= L

n (n-1)2’
nz2, we will get a very simple computation of the

covariance between the gravity anomalies:

¥ 1
' — ——

’

Ag Rz n

(20) 11 sn+1Pn(t) =

lle~18

!
8g 5
Unfortunately the reproducing kernel corresponding
to the series (20) can't be represented by a simple

closed expression. But instead we can use

02=——:|——--—0r 2
n ne{n-1) (n=1) (n-2) °

The inner products corresponding to these two param-

etrizations are

(21) [ ] 0% 0%aa = (r,0)

Q o
where a takes on the value of all pairs formed by
the numbers 1,2 and 3. In the first case we have

- R . r
W1(r) = a1(12 = 15 + 4 ﬁ)

and in the second

- a2 . r
Wolr) = a,(24 2 - 35 + 12 7).

The corresponding closed expressions becomes

(22)  X,(P,@) = a,+s(1-L+(ts=1)1n +2)
L,
and

az-s(i%E-L1+s((P2(t)-s-t)

(23) X, (P,Q)

2
L,

‘1n 7= + S(st2-1))),
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where L1 = 1-tg-L and L2 = 1-ts+L and ayr as are

normalizing constants of dimension (m/sec)4.

The actual evaluation of the value of the functionals
(5) - (9) applied on the kernel will in some cases be
difficult. When both points of evaluation (the points
where the measurement have taken place) are near to
the boundary, the guantity s is nearly 1. We will,
using e.g. the kernels (22) or (23), have to compute
expressions, which consist of guantities, which are
formed as differences between quantities of nearly
equal magnitude. This is related to the fact, that
the functionals (5) - (9) generally are not elements
of the dual space, when the related points of evalua-

tion are situated on the boundary.

This problem may be solved by a change in the Hilbert
space. We may require the functions in the Hilbert
space to the harmonic down to a Bjerhammar sphere,
i.e. a sphere totally enclosed in the Earth. For a
Hilbert space of this kind, the mentioned functionals
will always be members of the dual space, i.e. having

norm less than infinity.

(Note, that the use of Hilbert spaces of functions
harmonic in an open set including the set outside the
surface of the Earth, will not limit our possibili-
ties of finding an arbitrary good approximation to T.
This is due to the Runge theorem for harmonic func-
tions, cf. [2], p.54).

The use of the method of collocation requires the
formation of one equation per observation. We will
then easily arrive at very big systems of equations.
Elimination methods, used for the solution of the

- equations, requires the computation of many sums of

products, thus producing rounding errors. Further-
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more, the rétio between the smallest and biggest
eigenvalue of the matrix of the equations must lie
within certain numerical boundaries, which will
depend on the properties of the actual computer.
Hence, we must require, that the Hilbert space not
cause a too strong correlation between the measure-

ments.

Thus, the collocation process will not always work in
a Hilbert space containing the low order harmonics,
when the method is used to construct a local approxi-
mation. This problem can be partly solved by removing
the "global" information as described in example 3.2,
cf. the situation described in fig., 3.

A: all coefficients included

B: coefficients of degree < 15
removed

C: coefficients of degree < 90
removed

200

Covariance function of gravity anomalies
corresponding to different Hilbert spaces.
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All the above mentioned criteria will still not be
enough to determine a specific Hilbert space, which
should be the best suited for determining the appro-
Ximation %. In practice, the following procedure has
given good prediction results. The idea behind is,
that the above defined error of prediction should be
a good estimate of the mean square prediction error.
The mean square variation of the measurements are
represented by the so called empirical covariance
function. The Hilbert space was then determined by
requiring that the covariance function derived from
the reproducing kernel was the best possible appro-
ximation to the empirical covariance function,

(see [3]).

Presumably, a better method is to compare the appro-
ximation computed in different spaces. One set of
measurements should then be used in the construction
of the approximation. Another set should be used as a
test set to check the guality of the solution, the
likelihood of the estimated errors of prediction, the
stability of the solution of the equations etc. Some
preliminary computational experiments in this direc-
tion indicates, that when a dense grid of measure-
ments are used, different Hilbert spaces, will give
nearly the same quality of the predictions.

Finally, theoretical methods should be used to check
that the approximations will converge towards the
solution to the appropriate boundary value problem,
when the grid of measurements becomes more and more
dense.
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4. CONSTRUCTION OF A LOCAL APPROXIMATION

We will now consider the approximation of T in a
subset included in . The restriction of a harmonic
function to an open set will be a harmonic function
on this set. We could then regard Hilbert spaces of
functions harmonic in this subset. Thus, this 1is
generally not possible, because of the difficulties,
which occur in the computation of an orthonormal
system and thereby in the construction of the re-

producing kernel.

We are then forced to consider Hilbert spaces of the
type presented in section 3. And as mentioned, it 1is
necessary to remove the "global" information e.g. by
the procedure described in example 3.2. But even
when the "global" information, corresponding to the
about 400 coefficients, which is determined at pre-
sent, is removed, measurements lying in a distance
of 4° - 5° away, may influence a local approximation,
cf. fig. 3. We must then find a method to improve
our reference potential, so that it at least in the
area of interest represents the influence of the

harmonics up to a suitable order.

This has been tried with fairly good results using
mean gravity anomalies and applying the collocation

procedure.

Unfortunately it is very difficult to compute the
value of the mean anomaly functionals applied on a
reproducing kernel. A practical method is to represent

the functional as

: = =1 :
(24) ZA_g' (V) = —— - s5 V..

where so<1, (i.e. regarding the mean anomalies as
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point gravity anomalies in a point lying in a certain
height above the surface of the Earth). This repre-
sentation reflects the damping effect of the mean
anomalies on the harmonics of high degree and the

samller mean square variation of the mean anomalies.

Of course, this procedure does not give us information
of the number of harmonics, which can be regarded as
removed. But as a pratical rule, we will require,
that the reproducing kernel is changed so much, that
the point gravity anomalies, lying in a distance
equal to the diameter of the area a, cf. (6), becomes
independent. For 1° x 1° equal area anomalies the
first zero point of the covariance function derived
from the reproducing kernel shall then be found in a
distance of 1°. This correspond to the removal of the
harmonics up to degree 90 in a Hilbert space having

a reproducing kernel of type (22). (We note, that
this change corresponds very well to the observed
change of the first zero point in the empirical
covariance function of gravity anomalies, which refer

to a locally improved reference potential).

Let us now suppose, that we in a local area want to
represent the gravity anomalies with a mean square
error 10-times better than the observed mean square
variation. This variation is estimated to 1200 mgalz,
globally. The mean square variation of the 1° x 1°
mean gravity anomalies is estimated to 700 mgalz.
Thus even when an approximation is constructed, so
that it agrees with the 1° x 1° mean gravity anom-
alies, we must still take care of about 40% of the
variation.

It may then, in same areas, be possible to select a
reasonable number of gravity anomalies, so that a
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sufficient good approximation can be constructed.
Otherwise, mean anomalies over e.gd. 6' x 6' areas can
be used first, and then point values. Gravity values
are then predicted as the sum of the contributions
from all the approximations:

P

Ag = zig(ﬁ)

where

=3
il

T 4 T, 4eeet T
n

(25) ot T

Here %o is determined according to example 3.1, and

Ti’ 1>0 according to example 3.2,

My
P P r
Jg=1
(25b) Kk, = 7 o2&t p ()
1 .=J J J
J7 5

and Ji > Ji-1' In this way we have a method for going

from the "big to the small" as required by Moritz.

Now, someone may propose, that the mean value of the
local area could be computed first of all. Then the
collocation procedure could be used in a Hilbert
space, where the harmonics up to a certain order,
corresponding to the magnitude of that area, was
removed, and where the mean value was subtracted from
the anomalies. Thus, such a procedure will not allow
us to fit local solutions together, when we want to
include e.g. height anomalies or deflections of the

vertical in the computations.
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The same procedure can be used when we want to use
both gravity anomalies, deflections of the vertical
and height anomalies. The final approximation %n of
(25) is then computed from these measurements, using

~

Ty 4ot T,.1 @8 a reference potential.

But one problem is left. Until now, we have consid-
ered "exact" collocation, i.e. we have regarded the
measurements as having no errors. We will continue to
regard the gravity anomalies as errorless, but the
deflections of the vertical may contain both system-
atical and big random errors. The systematic error
can originate from errors in star catalogues, cor-
rections for polar motion, scale errors in the
geodetic coordinates and errors in the transformation
parameters, which determines the transformation from
local geodetic coordinates to global.

It is possible to use the correlation between the
gravity anomalies and the deflections for the deter-
mination of the systematic errors. We will represent
this error as a change in the deflections (Eo,no) in
a point in the middle of the area considered,

d. = (6£O,Gno). The change of the deflections (gi,ni)

o
in a point g will then be

: i
[ g, 11 A4y L
26 = =
(26) 1 6 . ; or d. A do.
n; a1 @53 Sng

The coefficients a;k are determined by [1], (5-59).

The vector § may be determined by requiring

(27) 1712 + (mp-2)0™" (m=p-a)
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to be minimum as a function of the variables g, in

(3) and of do. m is the vector of measured values, p

! a weight

the vector of predicted values and D~
matrix. (The gravity anomalies have infinite weight
according to the above mentioned). We will then get

a set of normal equations like (3), but with two
extra rows and columns and with the matrix D added to

coefficients:

{Dij+Kij} {aj} + Aﬁ do = m,

" bl e )

A more simple method is to compute an approximation
%n from the gravity anomalies alone, and then predict
the deflections. do may then be determined by requir-
ing

(29) (m=p=u) D" (m-p-u)

to be minimum, or

T

aTp ]

I
Ad =AD" (mp).

Now, finally, it is possible to compute local approx-
imations to the anomalous potential using astro-
gravimetric data.

Hence, an approximation to T covering an area A4 must
be computed using
(a) the appropriate change of deflections and
gravity anomalies to a global reference
system,

{b) the best set of potential coefficients (50),
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(c) mean gravity anomalies covering the area 4
and the surrounding area in a distance cor-
responding to the covariance function derived
from the reproducing kernel K1, (%1),

(d) if necessary, mean gravity anomalies corre-
sponding to smaller areas than these used in
(c), (%2,...,%n_1),

(e} and finally the corrected deflections of the

vertical and the point gravity anomalies.

//////////// 7 7/
.
7 . ///////////,%
é % r? 2 .Tn .
T %
A atee chagbacn o e ony shaged T
Fig. 4a A Fig. 4b

When the number of observations necessary to obtain

a specific accuracy 1s too great, the area can be
divided in sub areas overlapping each other. We will
then get solutions %; for sub-areas Ai of 4, The.
described procedure (a) - (e) makes such a subdivi-
sion possible, because we simultaneously are changing
the Hilbert space and hence the reproducing kernel,
in such a way that the observations becomes more and

more independent.

The procedure {(a) - (e) has been tested in the

Danish area in a 2° x 2° square.
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(a) The Potsdam correction was applied and the
geodetic coordinates were changed from ED 1950
to a global reference system.

(b) The Rapp 14 x 14 solution from 1967 was used
as T

(c) 1© x 1° mean gravity anomalies covering an
area of 10° diameter were used for the computa-
tion of §1. The reproducing kernel (22) was
used with the ratio between the radius of the
Bjerhammar sphere and the mean radius of the
Earth equal to 0.995 and J1=15, cf. (25a}.

(d) Was not used.

(e) In this step, the kernel (22) was used with

=110. Using 81 gravity anomalies spaced 15'
apart, the change in the deflections d was
determined according to (29), (65 = 1“ and
6n = -1"). In the final approx1mat10n T2

2 x 5 deflection components wereused.

The approximation T = T + %1 + %2 was checked using
a test set of 64 graVLty anomalies (lying in the
middle of the squares formed by the 81 observed

anomalies) and 60 deflection components, cf. table 1.

The proposed method of fitting local solutions to-
gether has been tested in the Scandinavian area,
using only deflections. But the results werenot
sufficient good, probably because we had not removed
the global information. Overlap areas of width 1°
wereused, but should have been broadend. The height
anomalies vary in the middle of the overlap area

with up to 1.5 m at certain points.
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5. APPLICATION OF COLLOCATION

The original prediction method for gravity
anomalies developed by Moritz and others was an
application of the prediction theory for stochastic
processes. The here described theory and prediction

procedure is the functional analytic counterpart.

The statistical model has many weak points. It is
difficult to give a clear description of the probabil-
ity space underlying the stochastic process. And the
estimation problems can't be solved before the

anomalous potential is perfectly determined.

In the functional analytic model, the point of depar-
ture is a reproducing kernel Hilbert space. In this
Hilbert space, we get a solution to a problem of
astrogravimetric collocation following the described
procedure. But we meet the same type of problems as
in the statistical model: it is not easy to give good

reasons for preferring one Hilbert space oOr another.

As far as the collocation procedure has been applied
until now, the problem of finding a Hilbert space,
which gave sufficient good predictions, has not been
severe. When we used reproducing kernels, from which
we could derive good approximations to the empirical
covariance function, the prediction results were

acceptable.

In another respect the Hilbert space problem is not
so severe. Different Hilbert spaces will give nearly
the same prediction results, when the measurements
are situated sufficiently dense. - But there may
exist functionals, for which the predictions are
unstable, when the Hilbert space is changed.



110 C,C,TSCHERNING

Hence the collocation procedure should be applied
with due caution. The approximations and corre-
sponding predictions should be checked by comparing
the results with the results of other methods. And
a test set of measurements should be used for the
control of the validity of the predictions.
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