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ABSTRACT

This report first develops a new anomaly degree variance model by considering
potential coefficient information to degree 20, and updated values of the point anomaly
variance (1795 mgal®), the 1° block variance (920 mgal®) and the 5° block variance
(302 mgalz), the variances being given with respect to the Geodetic Reference System
1967, This new model was computed assuming that anomaly information was given
on a sphere of radius 6371 km with the radius of the best fitting Bjerhammer sphere
found to be 6369.8 km.

This new model and several other models were used to develop closed expres-
sions for the covariance and cross-covariance functions between gravity anomalies,
geoid undulations (or height anomalies), and deflections of the vertical, It is shown
how these global covariance expressions can be modified for use as local covariances
and for use when mean anomalies are being considered. A Fortran subroutine is
provided for the determination of the covariance values implied by the recommended
anomaly degree variance model,

ii



FOREWORD

This report was prepared by C.C. Tscherning, Research Associate,
Department of Geodetic Science, and the Danish Geodetic Institute, and by
Richard H. Rapp, Professor, Department of Geodetic Science. This work
was sponsored, in part, by the Air Force Cambridge Research Laboratories,
Bedford, Massachusetts, under Air Force Contract No. F19628-72-C-0120,
The Ohio State University Research Foundation Project No. 3368B1, and in
part by the Danish Geodetic Institute. The Air Force Technical Monitor is
Mr. Bela Szabo, :

Funds for the support of certain computations made in this study were
made available through the Imstruction and Research Computer Center of the
Ohio State University.

The reproduction and distribution of this report was carried out through
funds supplied by the Department of Geodetic Science. This report was also
distributed by the Air Force Cambridge Research Laboratories as document
AFCRL-TR-74-0231 (Scientific Report No. 14 under contract No. F19628-72-
C-0120).

iii



Section

1 UL W

oo
.

10,

11,

TABLE OF CONTENTS

Title

Introduction

Preliminary Equations

Numerical 1° Covariance Functions

A Five Degree Anomaly Variance

The Point Anomaly Variance

Anomaly Degree Variance Modeling

Relationship Between the Covariance Function of the Anomalous
Potential and Covariance Functions of Gravity Anomalies or
Deflections of the Vertical

Closed Covariance Function Expressions

Application of the Covariance Models for the Representation of
Local Covariance Functions

Representation of Covariance Functions of Mean Gravity
Anomalies

Summary and Conclusion

References

Appendices

Page

N

12
12

23

28

62

70

76

77

79



1. Introduction

In carrying out the estimation of gravimetric dependent quantities using the methods
of least squares collocation {Moritz, 1972) we need to have an analytical function that
can be used to determine the covariance functions for such quantities as anomalies, de-
flections of the vertical, geoid undulations etc. Generally speaking a numerical covariance
function for anomalies can be determined from anomaly data. The resultant function can
be considered by determining a model for the anomaly degree variances. Tscherning (1972)
has shown how such anomaly degree variance models may be used to determine the covar-
iance models for several gravimetric quantities. Since we need the best estimates of our
covariance models for the application of least squares collocation, it is appropriate that
we use the latest available data in determining our models. In addition we are now at a
stage where refinements in anomaly degree variance modeling, beyond that used by Rapp
(1973) can be considered.

The purpose of this report is to describe recent computations made and subse-
guent analytical work that leads to improved analytical covariance models.

2, Preliminary Equations

In this section some of the relevant formulas to be used in later sections will
be presented.

We first consider our covariance function which for the purposes of this report
will be considered as stationary and isotropic. Then we can follow the standard defini-
tion (Heiskanen and Moritz, 1967) of the anomaly covariance as the mean product {(at a
given distance) of the anomaly pair Ag,, Ag,. Thus:

C(P, Q) = cov (Agp, Agy)= M(Agr, Ag) (1)

On a plane the distance, or anomaly separation is usually specified by some linear dis-
tance (such as 20 km). If we deal with data on a sphere we usually considered the dis-
tance to be defined as ¢ a spherical arc so that we are interested in values of C(}). At
=0, C(¥) becomes the anomaly variance. For the estimation of C(}) from anomaly data
given on the surface of a sphere, we can write (Heiskanen and Moritz, 1967, p.258):

2 m r 2
c) = 17 j 1

—_ —_— ‘ e, e,,lededd /9
7 )09 820 3o 4 gop LBGA) A8(8,X)sinG b dA da 2)

where 8 is a polar angle (0 at the north pole), X is the longitude and « is an azimuth.



We will obtain from (2), a point anomaly covariance function if the Ag values
are point anomalies or we will obtain a mean anomaly covariance function (for a
specific block size) if the Ag values are mean anomalies., In practice the sphere is
not completely covered by anomalies so that an expression that may he used to compute
the covarijance between any two functions f, and f, given in blocks on the sphere whose
area is A, and A, respectively may be written: (Kaula, 1966a, p. I. B, 7).

Cw) = (3)
z AJ Ay
In our case f,= Ag (8, 1) and £, = g (8',\/) where the overbar signifies a mean anomaly.
If the anomalies are given in equal area block (3) becomes:
z £,f,
= 4
C(v) a (%)
where n is the number of products taken at a given spherical distance . In practice
the distance § to which a special product at distance y,, is determined by the equation:
p-BY oy <y A (5)
2 2
where Ay is a suitably chosen range. In our numerical results to be discussed later,
Ay was specified to be P,
A more fundamental covariance function than that of the gravity anomalies is
that of the disturbing potential, K(P, Q). We generally do not estimate K(P, Q) from
numerical data, but rather consider the following series representation for it: (Moritz,
1972, p. 88):
o g+l
=) a(f)
K@,Q=) (&) B cosy (6)
L=0
where:; g, are the degree variances of the anomalous potential;
R is the radius of the Bjerhammar sphere;
r,r’ are the geocentric radii to points P and Q which are separated
by a spherical radius ¥.
For convenience we let;
_ R
S = -I-:ET— (7)



In the case that we are dealing with information at the approximate surface of the
earth, it is convenient to take rr’' = RS where R, is a mean carth radius. Then:

(3

We then can write:

ﬂ,+l
g, S Pz(cosw) (9)

o]

K(P,Q) =

TI~78

We can also write the anomaly covariances in a series expression as (Moritz, 1972,
p. 89):

2+

= 2
C(P,Q) = z c,s" P, (cosy) (10)
g=o

where c 4 are the anomaly degree variances. As written, equation (10) would yield a
point anomaly covariance. In order to obtain a mean anomaly covariance we can use
the R, functions of Meissl (1970, p. 23) or the g, functions of Pellinen (1966). Using

Bys tﬁe modification of equation (10) yields:

B; ¢, s#ePz(cosij) (11)

0

C(P,Q-=

S18

where P and Q now refer to anomaly blocks. 8, is defined as follows: (Meissl, 1970,
p. 24):

1 1

5% Tcosly 2041 E_Pz—lmos%)“Pzn(COS%)] (12)

where {, is the circular cap radius of the mean anomaly block whose covariance is to
be computed. We have (for example):

Bo=1 ' (124)
B = 5 sinfjycot % (12B).
Since we usually deal with rectangular blocks of dimension s°, the corresponding {5

can be found simply by equating the areas of the circular cap and the square blocks.
Assuming a plane figure we write (for small blocks only):



g = &°//m = 0. 564s° (13)

Since gravity anomalies are related to the disturbing potential by the following
equation (valid in a spherical approximation which is the case considered here):

-oT 2
Ag = - 27 14
& ar R (14)

where T is the disturbing potential, we can relate the anomaly degree variances (c;)
and the degree variances of the anomalous potential (o) by:

R2
Oy~ (4-1)3 ) (19)

Analytic models for either ¢,, or ¢, have been described by Lauritzen (1973),
Tscherning (1972), by Rapp (1973a) and implicitly by Kaula (1966b, p. 98).

The inverse of equation (10) is:

cy= —Z—E%-l- s™(2%2) Jr”C(w)PZ (cosy) siny dy (16)
o]
Equation (16) is written assuming C({) is a point anomaly covariance function referring
to a sphere whose radius is R,. If C(}) is a point anomaly covariance function, then
(16) with C(V¥) replaced by C(y) will yield a mean anomaly degree variance Eﬁ, which is
related to ¢, through the 8, equations;

Sy =840 (17

Thus, knowing C ({) we can find ¢y from (16) and ¢, from (17) knowing the size of the
anomaly blocks to which C (V) refers. Specifically we can write:

o o241 1 J‘” S 0D, (cos i s d 16A
1= T g .BZS(E+2) . (VB (cosy) siny dy (16A)
3. Numerical 1° Covariance Functions

We first start our numerical determinations by the estimation of the covariance
function for 1° (approximately) equal area anomalies. One degree covariance functions
have been previously estimated for ¢ values from 0° to 7° by Kaula (1966c) and by



Rapp (1972). The values found in the past studies were based on analyzing 1° anoma-
lies within a 5° equal area anomaly so that product pairs in adjacent 5° blocks were

not computed nor were product pairs br distances greater than § approximately 7° were
considered. In addition, a programming error made the results of Kaula and Rapp
somewhat erroncous.

Because of the limitations of previous estimations of the 1° covariance function
it was decided that it was appropriate to compue a global 1° covariance function. The
starting point was a recent collection of 29960, 1°x 1° equiangular mean free-air
anomalies that was obtained by updating a 1°x 1° mean anomaly set supplied by the
Defense Mapping Agency ~ Aerospace Center. The updating was carried out using
additional data along the lines of a previous update as described in Rapp (1972). These
anomalies were all referred to the gravity formula of the Geodetic Reference System
1967. The 1°x 1° equiangular tape was then converted to a set of 21828 (approximately)
equal area anomalies. The subdivisions of these anomalies was such that the latitude
increment was 1° while the longitude increment was some integer degree of such size
that the block was approximately equal in area to a 1°x 1°block at the equator. The
covariances were computed using equation (3) with the A} in equation (5) of 1°. The
results of this computation are given in Table A of the appendix. In this table the
following quantities are given: number of product pairs, average | (in degrees),co-
variance (mgal®). For further use the 181 values given in Table A were interpolated
to determine a covariance at 0.5 degree intervals. This interpolation was carried
out using an Aitken-Iagrange interpolation using 20 points as implemented through
subroutine DALI (and DATSG) of the IBM System/360 Scientific Subroutine Package
(H20-0205-3), Version III. The resultant 361 values are given in Table One, being
identified as the unmodified C(}) values. The plot of this covariance function is
shown in Figure One,

From these unmodified C(y) values we can compute the smoothed anomaly
degree variances from equation (16). Such values are shown for degree 0 through 10
in Table Two where s and Rare taken to be one (causing a maximum error of less
than 5%). In addition values of c, from the recommended set of potential coefficients
given by Rapp (1973b) are given for comparison purposes.
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~14,05
-14.10
-14,96
~-15.07
~13.53
-12.14
-12.07
-12.91
=-14.92
~17.18
~19.16
-19.96
-19.48
-19.95
-23.66
=27.41
=29.62
-30.53
-30.,66
-30.88
-31.99
-33.69
36,24
-40,40
-47.02
-54.,21
=-54,64
41,72
-37,87
~72.83

-6,75

-7.02

~8430
-10.55
-12.27
~-12.26
-12.81
~15.66
~-17.89
-18.15
-17.72
-17.40
-17.80
-19.01
-19.49
-18,33
-17.32
-17.64
-18,88
-21.28
~23.93
-26.30
-27,49
-27.39
-28.23
-32.30
-36.39
-38,93
~406.16
-40.59
-41.08
42,45
-444,38
~47.,14
=-51.48
-58,26
-65.58
-66,11
~53,26
-49,.46
-84,43
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Table Two

Smoothed Anomaly Degree Variances (c,) As
Computed With 1° JFree Air Anomalies
and From a Current Potential Coefficient Set

- (mgal®)

cy cy
Degree from 1° anomaly data from potential coefficients
(Rapp, 1973b)

0 0.07 --
1 2.3 -=
2 26.2 7.8
3 58.3 33.9
4 16.0 19.2
5 26.3 21.6
6 36.0 18.9
7 22.8 18.8
8 12.6 10. 4
9 20.0 11.1
10 9.3 11.4

If the gravity formula were that of a mean earth ellipsoid, the zeroth degree
variance should be zero. This is essentially the case here with the fact that the ¥,
and the flattening of the GRS67 are quite close to be current best estimates of these
parameters (Rapp, 1974). The anomalies taken on a global scale should have no
first degree anomaly degree variance. The non-~global 1° anomalies that we have
imply through the covariance function a small one of 2.3 mgal®.

The anomaly degree variances from the potential coefficients should be reliable
at the lower degrees because of the accurate determination of low degree potential
coefficients thraugh satellite orbital analysis. Comparison of these values with that
implied by the covariance function indicates poor agreement for degrees 2, 3,6 and 9.
This disagreement may be related to the fact that the 1° anomalies cover only 50% of
the earth's surface and we cannot hope to find good low degree information from such
limited coverage.

However, for future analysis it is important that we use a 1° covariance function
that is characteristic of the real world especially at low degrees. To develop such a
covariance function we modify the covariance function computed from the anomalies
by imposing on the modified function the ¢, values to degree 10 as listed in Table Two

11



(as computed from potential coefficients). To do this we first remove the effect of
the ¢, values listed in Table Two and then add back the covariance contribution from
the ¢y values, in both cases using cquation (11) setting B, and s equal to one. In
effect we carry out the following modification to obtain a modified 1° covariance
function:

C¥)a* Cl¥loms + ) ™ Lgnrey) 205D
=1 woerF)

The modified covariance function is shown in Table One being labeled Modified _C_(df).
This modified covariance function is plotted in Figure One.

Smoothed anomaly degree variances were developed from this modified
covariance function where were then converted to the actual degree variances using
equation (16A). These results and values of 8, for one degree biocks and s~&+2)
are given in Table B of the appendix.

From Table One, using the modified covariance function of the current estimate
for the variance of a 1° anomaly is 919.66 mgal®, or a root mean square value of

(18)

+30.3 mgals with respect to the gravity formula of the Geodetic Reference System 1967.

4, A Five Degree Anomaly Variance

For purposes of obtaining models of anomaly degree variance using procedures

such as described in Rapp (1973a) we need to estimate the variance of the 5° anomalies.

This can be done in two ways. The first procedure is by the numerical integration of
the 1° modified covariance function according to equation (7-82) of Heiskanen and
Moritz (p.270). This leads to an estimate of 305 mgal®. The second procedure is to
compute the variance directly from the 5° anomalies. This was done by first predict-
ing 5° equal area anomalies using the methods described in Rapp (1972) but with the
more current 1°x 1° set. The variance computed by this procedure from the 1354
predicted anomalies was 298 mgal®. We adopt for further use the variance of 5 degree
anomalies as 302 mgal® with respect to the gravity formula of the Geodetic Reference
System 1967,

5. The Point Anomaly Variance

The value of Cy is an important quantity as it is a scaling factor for many
representations of the point anomaly covariance function. C, has been treated as
both a local or regional quantity, or a global quantity. On a regional basis C, is
the variance of the point anomalies in some defined area. Thus, it will change from
area to area. The global C, value is considered tc be representative of the gravity
field of the whole earth. The estimation of C, on a global basis is not straight

12



forward since we do not have global gravity coverage. The only global point covariance
function numerically estimated is that given by Kaula (1959) where he used gravity data
that was current to 1958. During the 16 years since the compliation of gravity data as
used by Kaula, a considerable amount of additional data has become available. Thus,

a new computation of global point covariance seems appropriate and is needed. Such a
computation can only be done through some organization that has access to the gravity
data holdings. For this report we do not have the facilities or funds to carry out a
computation of a point covariance function. However, we can use several procedures
to determine C,, the quantity so fundamental to the analytical representation of a point
covariance function.

5.1 Method One

One method to estimate C, is to consider the relationship between a point

covariance function (C(d)) and the variance G2 ) of anomalies given in blocks of size

s°. One convenient relationship is given by Hirvonen (1962):

2
G2 = I/ WC (d) dr (19)
0

where d= rs

W= (27 - 8r+ 2r°)r when 0<r<1
W= (2m- 4- 2r® +8/T°-1 -8tan™*/T®- 1) r where 1<r</2
If we represent C(d) in the form of:
c(d) = G, £d) (20)

we can solve (19) and (20) for C,:

2 2
C, = _%_ = Gio (21)
Wi(d) dr I
0

The value of I can be obtained for various representative f(d).

Many representations of the point covariance function have been suggested.
Many of these representations are summarized in papers by Groten (1966), Lauer
(1971), and Jordan (1972). For the purposes of this paper we have used three models.
These are:

13
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(1) C(d) = Cqe ™ '22)
f(d)

-d/c
d >e /e (23)

@) Cd)=Co(1-5~

T I

£, (d)
(3) C(d)= G, (1+d(a; + d(a; + d(ag + d(a,+ d(as)))))) (24)

P i Ve g

f3 (d)

The ¢, and c, values were obtained from fitting the Kaula (1959) point covariance
curve to a distance of 1.5°. We found ¢, = 0°. 897 and c, = 1°.88. Beyond a distance of
1.5°, the point covariance would not be represented well by equations (22) and (23) with
the above constants. The constants of equation (24) were obtained by a least squares
polynomial fit using the Kaula point covariance function to 8°. We found:

a, = -.9816195
a5 = .4894498
a, = -.1149583
a,= .0126057

ag = -.000523222

il

For these models, the root mean square fit to the obgerved covariance function was
+30 mgal®, +75mgal®, and +28 mgal® for models 1, 2 and 3 respectively. For s°=1°,
values of I (computed by numerical integration), and Cy(taking G = 919.66 from
Table One) are given for each of the models in Table Three.

Table Three
Estimation of C, from 1°
Anomaly Block Variances

Model I Co

1, equation (22) .64185 1433 mgal®
2, equation (23) .66491 1383 mgal®
3, equation (24) .62595 1469 mgal®

Using weights based on the root mean square fits to the point covariance curve, the
estimated C, from this analysis is 1447 mgal®.
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5.2 Method Two

A more direct method for determining C, is through the analysis of the actual
point gravity anomalics. Such an analysis is not a straight forward one since the
anomaly data is not uniformly distributed over the earth. Since certain areas (such
as land areas) have, in general, denser anomaly coverage than ocean areas, and
since free-air anomalies are correlated with land elevations or ocean depth, special
care needs to be taken in the analysis of a set of point gravity anomalies for C, .

In our analysis we basically considered a point variance by elevation range,
and then converted these individual variances into a global estimate of C, by form-
ing a weighted mean with weights being based on the percentage of the earth's surface
lying within the elevation range.

As the first step in this procedure the Defense Mapping Agency Aerospace
Center considered a set of 2,253,122 point free-air anomalies whose elevation or
depth was known. Elevation ranges of 100 meter increment were chosen. For all
anomalies falling within each range, the mean anomaly, the mean square anomaly
and the mean elevation from the points, was determined. The mean square anomaly
was computed as the sum of the square of the anomalies with the elevation range
divided by the number of anomalies within the range. In subsequent discussions this
quantity will be referred to as the variance of the range. This terminology is not
specifically correct as a variance is usually defined with respect to a quantity whose
mean is zero. I fact, the anomaly mean within a range will not be zero, but it will
be zero or close to it on a global basis. This data by ranges is shown in Table Four.

In order to form a global estimate of C,, we now need to know how elevations
are distributed on the actual earth. To do this we considered mean elevations in 1654
5° equal area blocks and 64800, 1°x 1° mean elevations, From this data the percen-
tage of the earth's surface within a given elevation range could be found. The results
found for the 5° and 1° data are shown as the last two columns in Table Four. The 5°
results are shown as a matter of interest only, as the 5° subdivision is too large for
the purposes needed here. We should note that all 0.0's given in Table Four with the
exception of the mean anomaly for the 100 to 200 meter range indicate no data was
available for the quantity. The 1° subdivision is also not suffic iently small for the
most accurate work as can be seen from the fact that certain elevation ranges for
which there was point elevations data were not represented in the data from the 1°
mean elevation data.

The weighted variance (or C,) was then determined as follows:

z P, (Co )1
1

__,Z__P:_

i

COZ
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Table Four
Anomaly Variance and Related Information by Elevation Range

Point anom. Mean sq.  Average of Percentageofearth's

Elevation Range No, of point mean anomaly  pt. elevations surface within range
(meters) Anomalies (mgals) (mgal®) (meters) 1°data 5°data
-14100 -14000 0] 0.0 0.0 0.0 0.002 0.0
-11200 -11100 1 -213.1 45411.6 -11113.0 0.0 0.0
-10800 -10700 5 -300.8 50650, 3 -10750.6 0.0 0.0
-10700 -10600 1 -277.3 76895.3 -10674.,0 00 0.0
~-10600 =10500 2 -285.0 81253.5 ~-10592.0 0.0 0.0
-10500 -10400 5 -282.4 798323.0 -10425.2 0.0 0.0
-10400 -10300 13 =270.6 T14429,2 -10353.8 0.0 0.0
-10300 -10200 8 -290.3 85035.7 -10228.4 0.0 0.0
-10200 -10100 12 -283,4 80914.0 -10149.4 0.0 0.0
-10100 -10000 9 —-282.3 80402.3 -10065.4 0.0 0.0
-10000 -53900 22 -279.8 79255.9 -9947,7 0.0 0.0
-9900 -9800 K -276.4 76443 .4 -9858.6 0.0 0.0
-9800 -9700 11 -273.5 77105.5 -9743,8 0.0 0.0
~-9700 -9600 19 ~260.5 70629.0 -9645,9 0.0 0.0
-9600 ~-9500 16 =26T7.,7 73083.8 -9546,7 0.0 0.0
-9500 -9400 21 -248.8 64161.0 ~9446,1 0.0 0.0
-9400 -9300 27 -241.9 63265.9 -9347,8 0.0 0.0
=-9300 ~-9200 17 25962 68675.0 —9247 .8 0.0 0.0
-9200 -9100 22 -231.9 56997.3 -9147.5 0.0 0.0
=-39100 -9000 24 -243,2 61142.7 -9041.5 0.0 0.0
-9000 -8900 30 -236.8 57878.9 ~8956.7 0.0 0.0
-8900 -8800 24 =242+ 4 61454.6 -8853.9 0.0 0.0
-8800 -8700 36 —222.6 52069,2 -8T64.4 0.0 0.0
-8700 -8600 28 -227.8 54300.5 -8667.9 0.0 0.0
-8600 -8500 43 -222.1 51648,5 ~8551.8 0.0 0.0
-8500 -8400 56 -225.5 52099.5 -8440,7 0.0 0.0
-8400 -8300 386 -249.9 63345,2 -8360.1 0.0 0.0
-8300 -8200 130 ~220.6 50153,0 -8259.2 060 0.0
-8200 -8100 156 =-214.7 47255.5 -8148,.,5 0.0 0.0
-8100 =-8000 239 -221.0 51087.8 -8048,0 0.0 0.0
-8000 =7900 277 -231.6 57988, 7 -7952.1 0.0 0.0
-7900 =7800 310 =-211.2 47870.1 -7856.2 0.002 0.0
-7800 =7700 220 -207.7 46967.6 -7759.5 0.0 0.0
=7700 -7600 210 -204,2 45255, 4 -7654,5 0.002 0.0
-7600 =-7500 265 -205.3 46034,8 -7551.2 0.002 0.0
=-7500 -7400 313 -214,8 51871.4 -T7446,.8 0.0 0.0
-7400 -7300 417 -180.2 35771.0 ~-7337.,9 0.008 0.0
~7300 ~7200 478 -168.6 31597.3 -7250.2 0.003 0.0
-7200 -7100 506 -158.3 28832.5 -7151.5 0.002 0.0
=7100 -7000 359 -180.4 38391.0 -7054.5 0.014 0.0
-7000 -6900 407 -154.,1 27775.9 -6949,7 0.007 0.0
-6900 -6800 358 -160.3 30243.8 -6851.3 0.002 0.0
~6800 -6700 473 -131.8 21597.,5 -6744,5 0.005 0,0
-6700 -6600 465 -119.5 18588.8 -6658.1 0.009 0.0
-6600 -6500 530 -119.5 18717.8 -6546,2 0.024 0.0
=-6500 -6400 706 -105,5 15090.3 -6454.0 0.010 0.0
-6400 =-6300 796 °~ =93,0 12701.3 -6349,6 0.027 0.0
-6300 -6200 978 -T77.2 9847.8 —6246.4 0054 0.0
-6200 -6100 1311 -57.7 6841.8 -6146.7 0.153 0.0
=-6100 ~6000 2596 ~32.4 4002.0 -6049.2 0.321 0.0
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-6000
-5900
-5800
-5700
-5600
-5500
-5400
-5300
-5200
-5100
-5000
-4900
-4800
-4700
-4600
-4500
-4400
-4300
-4200
-4100
-4000
-3900
-3800
-3700
-3600
-3500
-3400
-3300
-3200
-3100
-3000
-2900
-2800
-2700
-2600
-2500
-2400
-2300
-2200
-2100
-2600
-1900
-1800
-1700
-1600
-1500
-1400
-1300
-1200
-1100
-1000

-900

-300

=700

-600

-5300
-5800
-5700
-5600
-5500
-54900
-5300
-5200
=5100
-5000
-4900
-4800
-4700
-4600
-4500
-4400
-4300
-4200
4100
-4000
-3900
-3800
-3700
-3600
-3500
-3400
-3300
-3200
-3100
=-3000
-2900
-2800
=2700
-2600
-2500
=2400
-2300
-2200
-2100
-2000
-1900
-1800
-1700
-1600
-1500
-=1400
-1300
-1200
-1100
-1000

-900

-800

~700

-600

=500

4024

7166

8170

9542
10061
12429
14512
14791
15930
16687
16185
16178
16412
16153
16000
14261
12350
12568
11377
11111
11122
10887

3948

9982
10272

9574

9899
11356
11342
11490
12194
13157
13830
13583
19490
10858
10449

9355
12206
12676
12963
11371

9321

9475
10452
10102
10371
10581

9917

9722

9816
11381
10731

9038
10338

-27.3
-22.5
-17.8
-14,2
-13,0
-11.7
-12.0
-12.2
-13,6
-12.7
-11.9
—14.6
-13,9
-13.2
-12.2
-12.3
-10.6
-12.1
-15,1
-11.0

-8.7
-10.3

-7.6
T4

-7.9
-6.8

-7.1
-5,0

-5,0
~T7.6
"10.2
-10.6

-4 4
-12.9

-2.2
-17.7
-15,4
-15.0
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3215.6
178642
1319.7
1287.4
1143,5
1106.4
1113.8
1245.

1243, 7
1231.6
1370.6
1401.8
1350.3
1433.0
1243.0
1431.1
1550.4
1588.8
2402.4
1709.1
1476.,6
1705.2
1732.4
1861.9
2086,.7
2061,3
1974, 4
1920.2
1884,.6
2039,.3
2075,9
2138.0
2080.9
2353.,4
2107.7
3254,9
3024.0
3135.1
2133,6
1803.5
1713.2
2125.1
2522.1
2308.1
1964,9
2023.2
2321.7
2407.0
2397.7
2246.,5
2221.2
264045
2043,0
2294,5
2636.4

-5946,8
-5847.2
-5750.8
-5550.1
-5450.,9
-5350,.6
-5248,2
~5147.5
-5051.1
-4950.5
-4849.1
~-4750.2
-4651.0
~4551.&
~-4352.9
-4251.1
-4149.5
-4050.4
-3949,.8
-3851.0
-3751.4
-3650.7
-3550.7
-3451.0
-3350.6
-3250.4
-3151.1
-3050.1
-2950.7
-2848.7
~2748.9
-2651.8
~-2544,1
-2451.0
-2351.8
-2251,.,8
-2147.7
-2048.7
-1951.6
-1851.6
-1751.1
~1649.8
-1549.9
-1453,0
-1350.6
-1252.6
-1151.8
-1051.6

-949,4

-752.6

-650.6

-547.9

0.292
0.502
0.697
0.983
1.44G
1.170
1.478
2.130
3.033
2.766
2.222
24395
1.815
2.027
2.115
2.102
2.0173
2.578
24366
2435
1.649
1.930
l.626
1.404
l.647
1.282
1.220
1.339
1.219
1.673
0.829
0.765
0.874
0.453
0.570
0.909
0.421
0.439
1.018
0.559
0.288
0.682
0.330
0.302
0,563
0.241
0.252
0.504
0.251
0.439
0.3283
0.331
0,288
0.400
0e459

0.120
0.181
0.403
0.562
0.833
1,059
1.688
1.620
2.111
1.738
2.816
2.085
2459
726300
l1.613
2.059
2866
2.051
2.514
2,053
2.129
2.204
1.929
2.398
1.299
2.092
1.449
1.818
l.167
1.091
0,914
0.967
0Tl
0,837
0«558
1.047
0e 7RO
1.332
0.593
0.615
D538
0.322
0.659
0. 438
0.790
0.673
Ob47
0.721
0.431
0.892
0.766
0.720
0.661
0e 570
Ceb604



-500
~400
~300
=200
=100

100

200

300

400

500

600

700

800

900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900

~400
=300
=200
=100

100

200

300

400

500

600

700

800

900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000

12816
16341
19910
37357
85482
404177
227862
172980
106121
86419
51225
35994
29210
26750
23329
23078
26348
26176
30036
23156
17911
15296
12868
11550
12138
13163
10544
8208
4939
4006
3547
2661
2150
1721
1331
1098
869
771
654
596
362
585
566
680
406
281
234
149
208
136
101
87
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12.3
12.2
19.1
33,7
37.4
4245
50.8
55.4
57.5
58,3
T4.4
8.4
87.3
88.8
94,5
80.5
103.0
82.6
91.5
93.5
102.6
105.8
117.9
134.6
151.4
114.6
137.4
149.5
163.6
198.3
111.5

247065
2490.7
1938.9
1756.5
1713.2
1345,0
8§07.1
801.3
970.9
1054.6
1345,5
1580.4
1654.3
1540.9
154045
1416.9
1193,7
1214.8
930.2
1165.4
1557. 4
1671.9
1610.2
1842.9
1683.3
1638,8
1886.8
2766,9
3644,2
4236,7
5041.9
5229.0
6384.3
T7472.7
8846,3
10269.7
11715.8
11760.3
13293,2
11545.6
16509.2
10158.4
11237.4%
10670.7
15102.7
13003.0
16503.9
23227.6
26309.9
16198, 7
20794.3
24966,3
29051.9
43451.1
46485,9
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-447,7
-249.7
-141.3
—-49,1

40,6
147.8
245.2
347.6
448,2
546,77
647.9
T48.6
849,.5
948,9
1048.9
1154.8
1251.9
1348.5
1448,.3
1548.4
1648.0
1749,1
1849.7
1951.7
2049.5
2146.8
2247.9
2346,.1
2450.8
2547.8
2647 .4
2748.3
2846.7
2947.,7
3048.9
3147.4
3249.9
3348.9
3449,6
3549,2
366067
3743.8
3844.9
3944,7
4052.3
4148.8
4242 .6
4344 ,9
4447.5
4548,0
4637.7
4736,6
4834,.6
4961.1

0.394
0.696
0.772
1.0732
3,151
3,557
3.961
3.431
2.960
2e424
1.812
l.497
1.210
1.109
1.054
0.889
0,773
0.689
0.506
0.451
0.368
0.272
0.238
0.219
0.183
0.171
0.153
0.091
0.078
0.062
0.068
0.075
0.044
0.033
0.035
0.037
0.030
0.022
0.033
0.026
0.022
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0.031
0.028
0.040
0.034
0.024
0.024
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252.5 63756.2 5018.6 0.037

5000 5100 1

5100 5200 4 82,2 18374.4 5163,.,8 0.028
5200 5300 1 268.4 72038.6 5235.48 0.037
5300 5400 0 0.0 0.0 0.0 0.020
5400 5500 0 0.0 0.0 0.0 0.016
5500 5600 0 0.0 0.0 0.0 0.012
5700 5800 0 0.0 0.0 0.0 0.004
5800 5900 0 0.0 0.0 0.0 0.002
5900 6000 0 0.0 0.0 0.0 0.002
7000 7100 0 0.0 0.0 0.0 0.002
8900 9000 0 0.0 0.0 0.0 0.002

19

L] [ ] L] [ [ ] . L] L]
o
[

ool eRoleloNoNoNeNoNe]

D00 DT OOD



where (C,), is the variance for each of the elevation ranges and P, is the percentage
of the earth's surface area having that elevation range as estimated from the 1° mean
elevation data. Values of C, as estimated from (25) using all the data, and data from
just the positive and negative elevations are given in Table Five.

Table Five
Estimates of C,

Method Co (mgal®)
Kaula (1959) 1201
Table Three 1447
Equation (25), all data 1795
Equation (25), negative elevations 1772
Equation (25), positive elevations 1860
Based on all anomalies without 1644

consideration of elevation ranges

For our future needs we select the C, =1795 mgal® as the best estimate. A truer
value may even be larger than this as certain high variance values found in certain
elevation ranges are not represented in the 1795 figures as our elevation data was
not sufficiently detailed to tell us what percentage of the earth's surface lies within
these elevation ranges. The 1795 value should be more reliable than the value of
1447 estimated from Table Three, as a certain smoothing has taken place in deriving
the Table Three estimates. In addition, it was necessary to make assumptions on
the shape of the covariance curve in deriving the values for Table Three.

6. Anomaly Degree Variance Modeling

At this point we will develop a model for the anomaly degree variance which
in turn will prove of value in deriving a closed expression for the covariance function
of the disturbing potential and other gravimetric quantities. The basic procedurés for
this modeling have been discussed by Rapp (1973a). However, we introduce for this
paper the s term and the 8, term.

We first postulate an anomaly degree variance model of the following form:

A(L -1
_AS-T) (25A)

4 -2y 1+B)

This model had originally been suggested by Tscherning. Best estimates for the A
and B parameters are to be found subject to the following data:
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1. Anomaly Degree Variances Determined From Potential Coefficients

The values of ¢, that are used here are for£=3 to 20 are those found from the
least squares collocation solution for potential coefficients as described in Rapp (1973b).
These values are given in Table Five,

Table Five
Anomaly Degree Variances From
Potential Coefficients (Rapp, 1973b)

(mgal®)
)2 Cﬁ, 4 CJZ
3 33.9 12 4,8
4 19.2 13 11.7
5 21.6 14 5.5
6 18,9 15 7.3
7 18.8 16 6.5
8 10.4 17 5.7
9 11.1 18 10.7
10 11.4 19 11.0
11 8.4 20 8.9

No formal standard deviations were attached to these values of ¢ %

These values of c, can be directly used with (25 A).

2, Anomaly Block and Point Variances

We have previously determined the block variances for 1° and 5° equal area
blocks. These values can be related to c, values through equation (11) which is re-
written for the variance (i.e. { = 0) as:

Ch=0)= Z B;c]&s’”3 (26)
=0

Equation (26) is also valid for point anomalies recalling that in this case R, equals one.

In (26) the summation is started from £= 0 but in fact we are trying to model ¢,
from degree 3. Thus, we carry out the summation to degree 3 but we must modify our
point and block variances by essentially removing the c, value. From Rapp (1973b)

c; = 7.5 mgal®. The modified data is shown in Table Six.
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Table Six
Modified* Point and Block Variances
For Anomaly Degrec Variance Fitting

Size Modified

variance
Point 1788 mgal®
1° 912 "
5° 295 "

*to refer to a. complete second degree field

The adjustment procedure was carried out by first trying to determine best
estimates of A and B for equation (25) by using the data of Table Five and the block
variances of Table Six. The value of B, needed in (26) was computed using a § value
determined from equation (13). Tests indicated the summation to « in (26) could
safely be replaced by a summation to (4) (180°)/6° or to 720/8°. Various runs
were made with different s values to determine a proper value such that the summation
to = (or in practice a high number such as 50,000 or 100, 000) would come close to
the modified point variance of 1788 mgal®. (It was found that for an accuracy of 0.1
mgals it was sufficient to carry out the point anomaly summation to £ = 16000 while
for a 0,001 mgal accuracy the summation should be carried to about £ =30000).

For theoretical reasons to be seen later, the B unknown in equation (25A)
should be an integer. To produce such an unknown we first made an adjustment
letting A and B adjust freely. The resultant B found was 24.03. We then repeated
the adjustment, fixing B at 24 exactly. In this adjustment the two block variances
were given weights of 1/100. All anomaly degree variances except for degree 3
and 4 were given weights of 1/,64. At degree 3 a weight of 1/. 08 was used while
at degree 4 a weight of 1/,16 was used. These weight assignments were made only
to assure a reasonable fit to the data and were not based on relative accuracy consi-
derations of the data.

We give in Table Seven the parameters of the final model.

Table Seven
Parameters of Anomaly Degree Variance Model

A= 425,28 mgal®
B =24 (exact)
s = 0.999617

We give in Table Eight a comparison of the anomaly degree variances from Table Five
and those as computed from Equation (25A)using the A and B values given in Table
Seven.
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Table Eight
Anomaly Degree Variances (mgal®)

Original Equation Original Equation
Table 5 (25A) (25A)
3 33.9 31.5 12 4,8 13.0
4 19.2 22.8 13 11.7 12.5
5 21.6 19.6 14 5.5 12.1
6 18.9 17.17 15 7.3 11.7
7 18.8 16.5 16 6.5 11.4
8 10.4 15.5 17 5.7 11.1
9 11.1 14.7 18 10.7 10.8
10 11.4 14.1 19 11.0 10.5
11 8.4 13.5 20 8.9 10.2

The root mean square difference between the original and adjusted values was +4.0 mgalg.
The 1° residual block variance from the adjusted model is 841 mgal® with the 5° residual
slock variance being 360 mgal® as compared to the corresponding values of 912 mgal®

and 295 mgal® as given in Table Six. By summing (26) with B, = 1 to a sufficiently high
degree (50000) the point variance implied by this model is 1788 mgal®. If we wished,

at this point, the covariance functions implied by this new anomaly degree variance
model could be computed by substitution of the model into equation (10) or (11). This

zyvpe of computation will be postponed until the discussion of the closed covariance
function expressions.

7, Relationship Between the Covariance Function of the Anomalous Potential and
Covariance Functions of Gravity Anomalies or Deflections of the Vertical

As explained e. g. in Moritz (1972, p. 97), covariance functions of quantities
related to the anomalous potential can be derived from the covariance function of the
anomalous potential K(P,Q). The covariance between two quantities A and B, derived
by applying a certain operation on T can be found by applying the same operation on
K(P,Q). Moritz calls this fact ''the law of propagation of covariances'. We have above
used the law to derive (15), and thereby the relation between K(P, Q) and C(P,Q). In
the following we will derive the relationship between K(P, Q) and the covariances of or
between the height anomaly {, the free-air gravity anomaly Ag and the two deflection
components £ and 7.

We will use the same notation for the covariance functions as used in Moritz
(1972), i.e. cov(A,B) for the covariance of the two quantities A and B. The relation-
ship between the gravity anomaly and the anomalous potential is given above in (14).
For the three other quantities we have the well known relations:

23



g= -1 9T anq | (28)

yer B@

1 AT
S —— .= 29
n cosp*y*r O\’ (29)

where ¥ is the reference gravity, r the distance from the center of the Earth, « the
latitude and X the longitude. It will for most purposes be sufficient to work in
spherical approximation. But we will not restrict ourselves to consider only points
on the surface of the Earth,

On the surface of the Earth r is substituted by a mean Earth radius (R,), ¥ by
a mean gravity value (G), and ¢ by the geocentric latitude. For a point outside (or
inside) the surface of the Earth, we will substitute for r the radius of a sphere e.g.
including the same volume as an ellipsoid confocal with the adopted reference ellip-
soid and passing through the considered point. (Thus, we will still call this quantity
r). The reference gravity can then be substituted by kM/r® and ¢ again with the
proper geocentric latitude. (In practice o is just treated as if it was equal to the
geocentric latitude).

We will introduce a more compact notation for the partial derivative with
respect to an independent variable e.g. r:

3
D=5
and for the second order partial derivative with respect to r and t:
52
D7 = ot

The formulae (27), (14), (28) and (29) becomes then:

¢= 1/ ‘ (30)
Ag=-D,T- 2T (31)
E= - G%r DCPT and (32)
n=- G -1008qp D)\T (33)
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Using the law of propagation of covariances given by Moritz (1972, p. 97) applied to
equations (30) - (33) we find:

cov (T, R)=K(P,Q) (34)
cov(Age, Agq) = C(P, Q) =D,Dyr K(P,Q) + 2 * D/K(P, Q) + 55
ZD.K(P, Q+ — K (P, Q),
r rr
cov(Ag, Co) = (-DK(P, Q) - ZK(P, Q) =7 , (36)
cov(Cs ,Cq)= K(P,Q)/ (G* G), (37)
cov(E ,Cq) = -D,K(P,Q)/ (G * G 1), (38)
cov(nr ,Cq) = ~DyK(P, Q)/(G'G* r*coso) (39)

cov(Ep,EQ)=DCPDQPIK(P,Q)/(G"G'I"r')=D2 (K(P, Q) /(GG rry, (40)

Lo
cov(Ee yMq) = D; JK(P, Q)/ (G'* r’* cosg T+ G), (41)
COV(TMp s Mg) = Dix K(P,Q)/(G" G- rr’ CoSwy * cos@'), (42)

/ 2 l 7
cov(Agp, &y) = —Dcpf (cov(Age, C))/r' =D s (D:K(P, Q)+ TK(P, Q)/(Gr') (43)

cov(Agr,Mq) = ~Dy (cov(Ag, Gy )/ (x"* cosy') =Dy /(D K(P, Q)+ "
(44)

2 K(P, QV(G'r’ cose’),
T

= —ere the quantities marked with an apostrophe refer to Q and the unmarked guantities
mzisr to P.
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The covariances involving the deflections components ((38) - (44)) are most
easily expressed @nd computed) as derivatives with respect to the cosine of the
spherical distance | between P and Q. (We will from now on only regard isotropic
covariance functions K(P, Q), i.e. so that (9) always is valid and hence K(P, Q) only
depends on ¥, r and rf.

Putting t= cos ¥, D,K(P,Q)=K’ and D{K(P, Q) =K'’ we get:

- . ’
DCPK~ th K
p— - ’
Hence
D° /K=D t*D st*K”"+D? ,t+K’ (45)
®o © © PP
3 = L . / a L] /
D(p)\'K—Dcpt Dy/t K+Dcpxt K’) (46)
2 _ . w ! 1! '
DAA'K_DAt DxtK +D>\>\,t K. (47)
2
-D/ (cov(Ages Ty)) = Dyt * (D K(P, Q) + 3 DK(P, Q) (48)
2
~Dy’(cov(Ag, T)) = Dy t*(Df,K(P, Q) + 7 DK(P, Q) (49)

Note, the common factors K’ and K'’ in (47), (48) and (49), i.e., the three covariance
functions cov(g,&,), cov(€s ,7q) and cov(ns s Mg ) can easily be computed at the same
time. The covariance functions (38) - (44) are used in actual prediction computations
involving deflections either as observed quantities or as quantities to be predicted.
These covariance functions are not anymore isotropic. Then for theoretical discussions
it is more convenient to regard the covariances, where one or both of the quantities

are either the longitudinal (£) or the transverse component (m) of the deflection of the
vertical, This type of covariance function will be isotropic and will have a simple
relation to K(P, Q).
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Pole

Figure 2.

Zpherical triangle (Pole, Q, P)with the deflection components (§,m)and (£, ) shown
as vectors.,

In Moritz (1972) the relationships between K(P, @) and the covariance functions
are expressed in terms of derivatives with respect to y. We will express the relations
in terms of derivatives with respect to t= cos .

Let the azimuth between P and Q be . Then we have (cf. figure 2j:

L = cOS Os(=Ep) + SINC(~7p) and

(50)
mp = SinQe(-€p) ~ COS QLo (-T)
Using (38) and (39) and the law of propagation of covariances, we get:
. 1 ’
cov(£p, Lq) = (cosa DﬂPt *K'+ sin o* Dyt K'-C—(')—SCD)/{G + G+ r) and
— i . . I_ . . 7 1 . ’,
cov(m, ,(q)= (Sinw DﬁPt K'- cosa* Dyt * K cosw)/<G G'* 1).
Because
t=sing* sing +coseo* cos’ * cos (X -\
we have
D,t=cose sing’ -sing *cosq * cos (A" -\)=siny * cos & and
Dyt =cos ¢ * cos o sin (X' -X) = coseg* siny  sing,
hence
cov(dp, Lq)=siny +K'/(G*G'* r) and (51)
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cov(me, §q)=0 (52)

For the covariance with the gravity anomaly we get in the same way (using the law
of propagation of covariations and (14))

2

cov(Ls, Agg)=+(D; K'+ T K')+siny/(G* 1) (53)

cov(me, Agq)=0 (54)
The expressions for cov(4p, £q), cov(£p, my) and cov (m,, my) are derived in a very
simple way in Moritz (1972, p. 109). We repeat the results expressed as derivatives
of t.
cov(b, £q)= 'Dd? K/AG+G rer))=(te K'-sin®y o K')/(G+G'+r-1) (55)
cov(l,my)=0 and (56)
cov(mp, mq) = -DyK/(siny+G* G’ *r+ r')=K'/(G+G* r - 1. (57)
From the formulae (51) - (57) several intersting consequences of the imposed isotropic
property can be seen. The deflection components at P are independent of the height
anomaly and the gravity anomaly in P. The transverse component of the deflection in
P, m, is independent of {,, Agy and 4,. For & this implies, that & is independent of
7o for v =o’and n, independent of &, for A= \'.

Finally we will conclude that the basic quantities to be comp%ted in the evaluation
of the expressions (34) - (49) and (51) - (57) are K, K’, K"/, D.K'+ _ K and
cov(Age, Ag)-

8. Closed covariance function expressions.

In this section we will consider different models for the degree-variances and
explain how closed expressions for corresponding covariance functions can be obtained.
We will distinguish between different types of degree-variances and hence between
different covariance functions models. Thus we will still consider only isotropic
models. A subscript k will be used to distinguish between the models. Then we can
define 0y, (A, B) to be the degree-variances of degree £ in the k'th degree-variance
model, i.e. so that the corresponding covariance function becomes:

[ee]

cov, (A, B) = (%)' G})J z ok,,e(A,B)sZJrlPZ(t) ,
4=0

(38)
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——

/R*
where I and J are either 0 or 1. (Note, that for I=J=1 we have (%) (‘-7)2 s).

TFor the already introduced quantities c . and g, we then have:
Cp Oy, L (Ag, Ag) and
0= 0y, (T, T).

The corresponding covariance functions become, using (9) and (10)

COV(Tp, To) = ) Oyt (T, T)sj“le&(t) and (59)
,@?o
covy (Agp, AZy) = Y Oy, 4,( (Ag, Ag)si“_z t)
RY /R\ T 241
-(F) <?>2: s (88, A" B
=0

The relationship (15) becomes:
2

R
(D) Ona(88, Le) (61)

In the following we will also consider the degree-variances oy y(Ag, T) of the covariance
function cov, (Ags, Tq) which is related to the covariance (36) by:

Oy, ¢ (T, T) =

covy(Agr Tg) = cOV(Ag, o) * G

Using (36) and (59) we get:

- 241 <
cov,(Ag To) = -Di( ) 0t (T, Ds” B) - 2 () oy 0(r, ms* IR, 0)
L=0 4=0
o 2-1
=Y o, D s ey (62)

zgi Y T S
" Oy, (T, T) R S P£ (t).

Hence, using (58) we see that I=1 and J= 0 and that
Oy, 0 (A8, T) = Oy, g (T, T) » {221 and (63)
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covy (Ag , Ty)= 5;,—

N
), Ot (Ag, T)s 1B ). 64)
{=0

{Note, that the introduced notation can't be used for covariance-functions involving
deflections. These covariance functions can be expressed as the sums of series in
PZ(L’) and P’é(t) {apostrophe mean differentiation with respect to t), and not on the form
(58) as a series in Py(t) and st*1,)

Five different models of the anomaly degree variances will be discussed below,
i.e., k will take on values 1, 2, ... 5.

In Tscherning (1972), analytic models have been described for covariance
function having anomaly degree-variances equal to:

0, 4 (B8, Ag)= Ay (4-1)%, 2>1 o (65)
Oa, 4 (88 Ag)= Az (L~-1/4, £>1and (66)
05,4 (A8, A8) = Az(4-1)/(£-2), £>2, (67)

where A,, Az, and A; ( and below A, and Ag) are positive constants of dimension mgal®.
These types of models have been further considered by Rapp (1972a).

£=~1
0y (08 A2)= A, T3y and (68)
s, £ (A8, Ag) =Ag (£-1) , 4>2 (69)

(4-2) (L+B+BL°)

For i+j = -2—; and i*j= B/B we can write (69):

- As (2-1)
%5, (A8, Ag) 8 (Z-2 (L ) (kD (70)

As indicated above, the covariance functions corresponding to models 1, 2 and 3 can

be represented by closed expressions. (By closed expression we mean expressions
which only contain a finite number of terms). This is also true for model 4 and 5, pro-
vided we place some restrictions on B or iand j. First of all the resulting degree-
variances have to be greater than or equal to zero for £ greater than 2. Hence, B and
i, j will have to be greater than -2, And the technique used below for the derivation
will imply that we have to restrict B and i, j to integer values and that we also will
have to require that i is unequal to j and that all three quantities are greater than -1.
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We will not consider the covariance functions derived using the model (65)
because the anomaly degree-variances are unrealistic. Thus, the model leads to
very simple closed expressions for the covariance functions, which can be found, e.g.
in Tscherning (1972).

The technique we will use for the derivation of the closed covariance expressions
is very simple. The covariance functions can be split into components which, upon
multiplication by appropriate constants will yeld the covariance function. These
components can be expressed as:

Fzz s£+1P£(t) and (71)
iz
_ 1 2+1 .
Fy = Z I s Py (t) for i>0 (72)
=0
F,= Z L g+1p (t) for i<0, and (73)
L+ i L ’
L=-1+1

as the first and second derivatives of F or F, with respect to t,
FI FII FI Fiu
’ ’ i .
We have for example (using (59) (61) and (67)):

(o]

R® L+1
covy (T, Ty) = A3Z ms Pﬂ(t)
L=3
3 1 1 N 4+1
=A -REZ { - sPp (t
2 ) L-2 2-1/ 5
=3

=Ag *R® (F-5 - (Foy -s°By(t)).

The closed expression for the function F can be derived using the well known formula
(Heiskanen and Moritz, 1967, eq. 1-80):
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F=s- 5 sfp (ty= —>—— . (74)
L o T- 2st+ s
4=0

The denominator will be one of the basic quantities in the following derivations, so we
will use:

L= /T-%st¥se,

M=1-L-s*t and ‘ (75)

N=1+L-st.
We then have:

=58
F=1.
1
The functions F, can be derived by multiplying F or T, by an appropriate power of s and
integrating the expression with respect to s.
Using:
) S£+i
I shti-1gg= ~, 4+1>0
L+1
0
we see, that by integrating
i-1 2
8 _ L+i-1 76
= 8
— =) P, () 76)
=0
we should be able to find F;. We have by (72)
- S A+
si-lp= y = P (t) for i>0 and by (73): (77)
Loo4+i 4

0

=
i
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S Py, is0. (78)
)

“he integrals:

i
I_EL_ ds, i=-2, -1, 0, 1, 2 (79)

zan be found in integral tables as Gradshteyn-Ryzhik (abbreviated below to G.R.), (1965).

From these basic integrals, F, can be computed using recursion formulae. We will
Iirst consider negative powers of s.

Using G.R. 2.268 we get:

[ e B g 122 A o, (80)
st (i-1yst-1 (i-1) si=1y, T (i-1)d si-2g,
and hence
ds L S
== +te | — +a_ 81
s®L S s*L 2 (81)
dS _ .__L Et(_L+t g%_ \ ljds %
1, 2% T2 ‘s L) 2Js . %
'82)
3ts+1 ds
_ . g .
052 L+B(t) s L -3

where a_,, a_5 are integration constants. From G.R. 2.266 we have:

s*L S T =i

ds 2-2ts+2+L 2
= -n _—
j TtsoL +on(s)+n(4)+ a_,
(83)
2
=in ] +in(S) +0n(4)+a_,
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The constant a ., is determined requiring (78) to be zero for s equal to zero.

~1 :r ds —J‘ g_s_=p/ng.-l~ 4
N e s N'@n()‘a_l’
hence a-, = n(4) and then:
stE=m 2 . (84)
N
Then we can compute F_, and F._,.
=z A-1
2R, =) 2 S - - g
§7F Z 7-1 T s N | & ~®
=2
= 1—_1-‘4-t'0n g+ a_,= 1_‘£S_L+t‘ﬁxn3 or (85)
S N 8 N '
F.,=8+(M+ts *in -ZN), /86)
o p —oo Sz—zpt—j<l+t ‘Pg(t)> dS+j£+a
'2‘2 L-2 Jl()— 78 s L 773
=3
1 t . 2 3ts+1
= Soetg T B+ (WD @n THA(S) - Tz Lray)

(1+2ts - (3ts +1) « L)/(28®) + By (t) *n %+ a_g

2
The constant a_; can now be determined. Because /n 3 is zero for s equal to zero, we
must have:

lim l1+2ts-(3ts+1) 1, _
8 50 252

-a

-3

The limit can be determined using the rule of 1'Hospital two'times. Note first, that
D, L= (s-t)/L. We then get
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lim 1+2st-(3ts+1)-L _ lim =3t° L-(3ts+1)(s-t)/L+2t
50 2s° 540 4s

=1im 3t (s-t)/L - (Bts+ 1 - 3t°)/L+ (3ts® 1 s -3t%s - t)(s-1)/L%)/4

8-

and hence:

We then get:

2 - 2
F_p = S((-3t8%+ 265 + 1~ (35 + 1) + L)/2+ (B (1) “In [+ 5= ) + %)

=s((1-ts-L)(3ts +1)/2+s> (R (t) *n 2 +

=g(M * (3ts +1)/2+8° (B, (t) * In -i—I+(1 - t%)/4)).

For the evaluation of covariance functions involving deflections, we have to compute
Fb, Fg, Fil, F'_Il, F.,, and Fi'z (where again the apostrophe means differentiation

with respect to t= cos §).

We will first compute some auxiliary quantities:

S 1, _s
DtL__'i’ Dt(i = 79
s 1-L
==+ == =8
DM=-s T
DN=- —%=—S(1+L)/L.

Hence from (84) we get by differentiation:
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Boaomn - SR e (L1
R Sz( -N(-8/L) - L;—S(1+L)/L)_ N s(1+I;)/L > \
(L*N) N (89)
S (ALl L) (L L)
L°* N L*N L°*N® L°N
For F_, we get using (86)

Fl,= S(DtM+Fo+t.° Fy)
= S(5(1-L)/L+F, +ts (E—N+Ilq>) o
=gs® ((1—L)/L+Q/n %H: . S<L:-[N +I%>> ,

il

F! = s(DEM+2F+t* FY)

3
s<%3 +Zsa<il._N+I% >+t- SS<L§\I-+§3 + iTIfI%)) (91)

= ss(il-3 + gﬁl%)jL ts(Li.N + %“L.II%% >>

and for F., we get by (87)

Fl, =s[DM* (3ts+1)/2+M §2§ +s2(3t'@n12—\I+Pz(t)°DJ/n§- ~t/2)]

2 é . g L] i 1
s®[(3ts + 1)(1-L)/(2L) + 5 M+s(3t +fn N+}§5(t) S(L

1 (92)
NN

)-t/2))

- %3 ((3ts+1)/L+2-7ts-3L>+S(3t‘?/"§ R (t)'s<11j-IIJ\I hE
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"o sg[%<L-3s—(3ts+1)(—S/L) 7S%>}S(3@n_wt8 141,

e L? L'N
(- R AT

O = R (=)

Pt losed expressions for F, i> 0 can be found using another recursion formula,
z. ?.. 2,263. We will treat this case in a more general way, because in this case we
wzn: to derive expressions not only for i= 1, 2 and 3 but for i=1 to». 1t is also

essary to have a recursion formula well suited for actual computations.

'z nave (using G.R. 2. 263):

1 1"10 l 1 2
stds _sl"l.L gzll)t“s ds - 11>J‘S or (94)
L i i
s ds Le2iotype L[S 1ds (-1, 1 [Si_z dsy L (99
51—1 = (L+(2i-1) si-1) T s sl=ay L i
=zalizing that:
s
e get
R e 56)

s*i -
Tortunately we can use the recursion formula for the computation of D, F, = Fi and
2R = F/' as well.

Zifferentiating (96) we have:

and
i*s (97)

Fi,1= (DyL+(2i-1)(F + tf’)-L——l - Ff )

Zifferentiating one time move:
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/i, = (DF L+(2i-1>(2F{+t-F1’)-(1—;1? cFL) i—}S _ (98)

SZ

] 2
— and = .
n DtL L1

Wit}l Dth - L

As in the case where i was less than or equal to zero, we must now compute the first
two terms in the recursion formula, i.e.

K, §, ', B, B and §’
Using G.R. 2.2641 we get
= T +a, =0n(2°L+2+5-2t) + a,

and hence, by (96)

R 5[ Prva] =g ot[F e

Computation of the limites of the integrals for s— 0 give us the integration constants:
a, =-In(2-2t) and
a, = -tin (2-2t)-1.

Hence

R (L) o 2 ), 9)

which can be verified by multiplying the numerator and the denominator by (1-s+L).
The last expression for K is the best suited for numerical use, because it avoids
dividing by zero for = 0.

For E, we get:

B= %(L+t°Fl+ag)= %(L—1+t~ﬂ). (100)

The first and second derivatives of § and E becomes:
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‘. (1-8+L) | (=28)(-s/L) _ 2s°

(1+s+L) (1—s+L)8 (1+s+L)(1-s+L)L (101)
e 282 = Sz = Sz
(1+L-ts)*L*2 (14L-ts)*L  L*N
- EN(—S/L)— L(—S/L—S)l _ [1+L-—ts+L+L2 7
1 - 12N? = TN o (102)
3 [1'+ L N 1 7
S TN TN
E;g'z = (-s/L+t+H+ Fy)=- —1—+—13§—+}?1/s (103)
L L°N
E = é (-s®/L% + 2K + t * F{') (104)
We will now derive the relations between the functions F, and the covariance models
2,3,4 and 5.
Model 2.

Using (59), (61), '66), we get:

8

COVy(Tr, T)=Ka(P, Q) = ) 0z,4(T, T)-s“lpz(t)

4

[

0

S _R® 2+1
=) o1y 82, 82T TR
=2




and by (73), (84) and (86)

2 2
CovyTr, Ty) = Ag R” [ (EL1 +t8° Ty ]=A, R¥[S(Msts *fn 5 +t5)-5+0n ]

(105)

AL R? - S[1- L+ (ts-1)n =

=AR®* s[1-L+(ts -1)in 1 1.

In the same way, we get using (64), (63), (66) and (84)
& ® Z+1
- R g4+l _a .p./R s
covy(Te, Ag )= 7 Z Ozy (Og, T Pz(t) =Az*R <;r> ZZB
) (106)

2 2
R 2
=A," — ¢ (Fy-tS2)= A+ — * 8(fn =~ ts
2t T (Bmts)= At —— s (i L~ t9)

and by (60), (66), (73), (74) and (84):

COVQ(Agp ’ qu =A z (t)

=2

=A,s z P(t i (t)) 107)

1 2 Y
=A,8(F-8-ts® -/ Fy-s°t))=A, s < - ﬁ)

The covariance functions invglvmg deflections of the vertical will, as mentioned above
contain K3, Kg' and -D,Kg - S K.

Differentiating (105) gives:

= A,R®*(F/, +5° - B)) and '108)
Ks' = A,R¥(FL, - 7Sy (109)
2
Because -D hKe~ 7 —-covg (Agp, Tq) we get by differentiating (106):
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2 R®
-DiKa - TKz = A T (Fo - 5%)

Combining the three last equations with (55), (57), (51), and (53) we get the following

equations, which can be evaluated using equations (88) - (91).
covy(Bp, Lq) = (t* Ka ~sin®y + K2)/(G* G T+ 1)

3

=Ag* R - (t(E' -s®-TFg)-sin®y - FLy - B’ ) /(GG
'Y

covg (mp , my )=Kg /(GG ror’) =

. R ,
cov, (hp,Co)=sin} + Kg/(G*G'* 1)=Ay 1 (FL,-s®-Fg)+siny/(G* G')

2

1 .
COVQ(IIP,AgQ):A /'(Fé—Sz)' Sin¢c —:éa———(}StSlnw(FO,—Sg)

r*r - G

Model 3.

From (59), (61) and (67) we get:

> R? 241
covs(T, ) =Ko (P, Q) = ) —— _ 05,4 (Ag,A)s” ~ By'D)
L, (-1
e S/1 1
=As R’ Z I (t):Asty <7LTz‘ i-1
L=2a

and then using (73):

covy(Tp, Ty) = AgR® ¢ [ F_ 5 - (F- - 5° Pa(t))]

For the covariances between the gravity anomaly and the anomalous potential we get
using (62), (63), (67) and (73):
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cova(Tr, Agy) =Y (2 =103, 4 (Bg, Ag)s**1p 1)

=3
2¢ 1 L+1

=A372ms P, (1) (116)
L=3
Rz

And for cov,(Ag;, Agq) we get using (60), (67), (71), (73) and (74):

- %‘ £-1 L+2 NN o W 2 |
covs(Bge s Age) = Az ) s BB m=asrs) sP iR
L=5 L=3
o 1 4+l (117)
L st*lp t:’
+Z 2-2 A
b=2

=Ag*s [-E —s—szt—sng(t)+F_g]
The formula (115) becomes using (86) and (87):
3 2 3
covg (T, ) =AzR [—S(M+ts “on 3 ST R () +8(M(3ts41)/2

+83(P, (t)* In 1%+(1-t3)/4))J (118)

. 2
2 sin®y 2 M
=A3R2°[s3(Pa(t)(1+Q/n N+t T2 )—sa'tﬁﬂzm+s(3ts—1)-?]

This is the correct version of the formula given by Lauritzen (1973, p. 82), in which
the quantities here called M and N have been interchanged and the R® factor is missing.

Explicit expressions can be written down for (116) and (117) as well, using (86) and (87).
But generally it is easier to compue the values of (86) and (87) separately and then
evaluate the covariances using (115)-(117).

The derivatives necessary for the evaluation of the covariances involving deflections
((38) - (44) and (51) - (57)) becomes by differentiating (115) and (116):
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Ky =AR°[FL + 3s°t-F.,] (119)

Ky =A RP[F.,+3s° -F|] and _ (120)

A, * R®

o Fla, (121)

2
DK - 7Kg =Dy cova(Ag, T)=

which then can be evaluated using the formula for F.,, Fl., F”,, and Filg , (90) = (93).

Combining the three last equations with (55), (57), (51), and (53) we get:

/

covy(bey fg)=(t* Kg-sin®y * K5)/(G* G T+ ') (122)
1
=Ag *S* [t(FL, +3tsTF.,) - sl (FL, + 35 -FLY )] el
covy (Mp, My) =K5/(GeG *rer’)y= A o s(F.,+3ts® - FL,), (123)

2

covy (Lpy Cg) =siny *K5/(G* G *1)=A4 J(FL,+3ts® - F') ) siny (124)

r GG
s ;2 N _ . ’ 1
covg(4p, Agy)=sin(-D/K" - ;,K 3/(Gr)=Ag-sesiny+ Flg* G (125)
Model 4. Using again (59) and (61) and now (68) we get
> _R° £
COV (T, B) =K (P, Q)= ) —— 0,1 (A, Ag)+s” B (t
o (A1) (126)
4=3
= 1
—A D=, . o ATL,
B ) s s R
l=3
Unfortunately we will now have to introduce one more notation related to the degree-
variances. We will define;
1
T, 4 (Ts T)= Oy, 2 (T, T)" AR (127)
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1
Ty, L (A8, T) =0y, 4 (AL, T) * o and
k

(128)

1
Ty, L (D8, Ag) =0y, 4 (Ag, Ag) A, (129)

All the quantities (127) - (129) are unitless quantities, and we have e.g. using (127), (61)
and (68):

2
T4, 4 (T, T)=

1 1
(1-1)% 0= £ (88, 88) * A "R® = (1_1)(£-2)(1+B)
This guantity can be partitioned as follows:

1[1 15 1 1 1>1/1 1>
o (T T 08 | o2 'z-lj‘B+2(z-2'z+B "Bl \i-1 -~ 1B

_ 1 B+1 _B+2 _1 ]
(B2)(B+1) L -2  £-1 4+B

» (72) and (73) we get:

hence using (126), (127)

B+l

A, ' R* c
Covy(Ts ) =K, (P, Q)= 2= [ ) 2L skt 1))
,@=

(B+2)(B+1)
=3

B+2 g+1
-1 s Pz(t)
3

3 S|
+Z RS Pz(t):'
,@=

(130)

(B+2)(B+1) l: (B+1)s Foy - (B+2)(F_1-s® Py (1))

s st SR ]
*Fe- BT B+17 B2
Correspondingly we get using (128), (68) and (63):
Ty g (A T)= N S ]and hence using (64), (72)
| 4,4 (28> (L-2)(4+B) B+2 L2-2 2+B ’
and (73):
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N 1 4+1 - 1 L+l 1
Ve (Bt s Ta) = 4 -—[Z T2 R0~ ) st Re] 5

_ AR?
T (B P2 (Fes

For 7,4 (Ag, Ag) we get in a similar way using (129) and (68):

41 4-2+41 1 /1 1y _1
T, 4(08, Ag) = (£-2)(4+B) (4-2)(L+B) 1+B Q-2 i8) B

. B+l N 1 o1 <B+1 + 1 >
(B+2)(4+B) (B+2)(4-2) (B+2) U+B £-2
and hence using (60), (72) and (73)

AL \ B 42 O 1 442
cov, (Ags, Agy ) = (B+2)< e +2 — s Pz(t)>
2=3 4=5 .
(132)

. 2 3 ;
:_‘é_‘L_s [(B+1)(F3— L_EM)+E2]

S
(B+2) B B+l B+2

We will now differentiate (130) and (131) getting the formula necessary for the compu~
tation of the covariances involving deflections;

A, *R? s® 358t
Kj = —= ]

(B+2)(B+1)[(B+1)P“2 (B42) (L, ~3t8%)+Ts - B+l B+2 (133)

A. . R2 3s;3
[l Sk A "o " 5.3 n_ =29
K} BB | (BDE2-(B42)(FL,-38°)+Fy B+2] (134)
2 AR? - s 3s%t -
L4808 T
-D,K'- K4 Dy (cov(Age; Tq))=. B+2) P!, ~(Fg - Bl B+2)J (135)

The formula (133)-(135) can be evaluated using (90)-(93) and the recursion formula (97)
and (98) with the "initial values'" given by (101)-(104).

By using (133)-(135) we can write down the covariance functions (55), (57), (51), and (53).
We get:
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