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Abstract

The main problem in the application of least squares collocationp for the determin-
atiop of approximations to the anomalous potential (T) of the Earth is (1) the incomplete
knowledge of the covariance functions related to T, (2) the representation of the data
(e. g, mean gravity anocmalies) by not too complicated linear functionals applied on T
and (3) the extensive computations implied by the collocation method, The problems

“have to a certain extent been solved for collocation problems, where potential
coefiicients, height anomalies, gravity anomalies and deflections of the vertical are
used. The covariance functions are represented by expressions derived from a repro-
ducing kernel. The functionals ¢orresponding to the mentioned type of data (except
mean gravity anomalies) are represented by sufficient accuracy usirig spherical
approximation. (Mean gravity anomalies are represented by point gravity anomalies
lying in a certain distance above the surface of the Earth.) When potential coefficients
and 1°Xx 1° mean gravity anomalies are used, collocation can be used to determine an
improved reference potential. Point anomalies lying 1° apart may in this case be
regarded as independent, i.e. the amount of computation can be reduced considerably,
Results of computational experiments, showing that T can be approximated very ‘well
using collocation, are presented,



Introduction

There is a long tradition and much practical experience in the use of least squares
methods in geodetic science. We use least squares adjustment in geometrical geodesy for
the determination of station coordinates or in gravimetric geodesy to adjust a gravity net-
work., Generally, we solve problems where the number of unknowns are less than the
number of cbservations. But it is well known that unique solutions only can be obtained by
e.g. fixing the coordinates of one station or requiring some minimum condition to be
fulfilled.

In physical geodesy, we want to determine the coordinates of one point: the anomalous
potential T, which can be regarded as a poinf in some space of harmonic functions. We face
an adjustment problem where the number of unknowns always will be greater than the number
of observations. For this reason, least squares methods have only been used to "predict!
the value of e.g. a gravity anomaly at a point from known anomalies in other points [5] p. 251,

The basic idea behind the prediction method is the use of a linear prediction formula
{presented here for gravity anomalies):
n

{1) Eg":Z aiAgi »
i=1 ’ '

where Ag, are anomalies measured in points P, and Ag. is the predicted value of the gravity -
anomaly at the point of prediction P.

The coefficients are determined by solving a set of linear equations:
{(2) (Gl {ay3= {Cpl,

where {C,;} is the nxn covariance matrix of the measured quantities and {Cﬂ, } the n-vector
of covariances between the measured quantities and Ag..

The same kind of prediction formula can be written down for other quantities, e.g.
the value of the anomalous potential at the point of prediction P, predicted irom some
measured quantities, x,:

“I=

& T@=) bix,

(%) {C(Xt’xf,)} {hj}:{c(TPsxi)]'

(We have here used the notation C(x,,x,) and C('I;. %) for the covariance bebween the
quantities x;, x; and T, x, respectively, We will in the following use the same notation for
the covariance hetween other quantities.)



Instead of solving equations (2) and (4) with the right hand sides equal to {C, },
{C(T,x,)} respectively, we could solve the equations with respect to the ohservations;

(5) {C(-\'nxj)} {CJ}= £xy ]

giving this prediction formula:
2} .
T(P)=Z e,+ C(%,x) or
=t
(6) ~ n
Ag, :z cy ¢ C(lg,x,) .

=1

It can be shown that the covariance function C(T;, x,), regarded as a function of P
is a harmonic functions. So (6) is in fact an approximation formula for the anomalous
potential. The constants cy can be regarded as the coordinates of the function T in the
finite dimensional space spanned by the n harmonic functions, C(T,%y).

The approximation Thas the property that the computation ("prediction’) of an
already konown value, m, will reproduce the value exactly. The approximation T will further-
more have the least possible norm in a certain (Hilbert) space of harmonic functions.

In the theory of differential equations, a solution method which results in a function
fulfilling the diiferential-equation, agreeing exactly with boundary values in a finite set of
points and which has the least possible norm in called collocation.

The original prediction method did not consider measuring errors. But Krarup [7]
and Moritz [15] have extended the approximation and corresponding prediction theory so
that errors can be taken into account, Moritz has further extended the theory, so that not
only approximations which simultaneously are solutions to a differential-equation but also
very general kinds of approximation problems can be considered. He calls this method
"Least Squares Collocation'.

We will now discuss some of the problems with and the results ohtained from least
squares collocation in physical geodesy, i.e., when we are approximating the solution to
an elliptic partial differential equation. We will not discuss the inclision of mensuring
errors, because this step is quite straightforward after the problems of "exact" collocation
have been solved, We will first consider problems in the theoretical model and later the
more practical problems arising from the fact that (5) gives us an equation for each of the
thousands of observations available,

The mathen®ical models behind collocation.

In the statistical models leading to the concept of covariance, the anomalous potential
T is associated with a stochastic process. T is an element of & sample space of harmonic
functions H with probability measure 2. The fundamental random variables, X,, are the
mappings which relate a function in the sample space H, to the value of the function in



the point P, i.e., X(T)= T{P). The stochastic process is formed by all the random
variables X,, where P is a point in the set of harmonicity., The covariance function is
a function of two variables P and Q and its value is the value of the covariance between
the random variables X,and Xq:

{7 C{Tp, Ty) = ‘[ %+ X,de, where 2 is the probability measure,
H

From this covariance functions, covariances between other random variables
can be derived, if the random variables are related to the fundamental random variables
X, by a linear or limit of linear operations on these fundamental random variables (for
details see e.g. [18]). This will define covariances or covariance functions of random
variables which involve differentiation or integration. The covariances can be obfained
by performing the corresponding linear operations on C(Tsy Ty). The covariance function
of the gravity anomalies becomes:

2
(8} C{Ag, qu) =-D; (C(Age Tel) - T C(Agr, Tg)

2 2 4
=Df, 17 C(T;, Tg) + T Pt C(Te, Ty) o D C(Te, To) + o C(T»,Tq)
where r and Ag, are the spherical distance and the gravity anomaly in P respectively, r’ and
Ag, the same quantities in @ and D,, D, the partial derivatives with respect to r and v,

The prediction or approximation formula becomes the one mentioned in the
introduction. The very complicated problem is the estimation of the covariance func tions
{7) or (8.

Both theoretically and practically, the estimation problem is difficult. Since we
have only one Earth, repetitions must be introduced by regarding a rotated Earth as a
new body. The covariances are then estimated by taking the mean of the product sums
of all points lying some fixed spherical distance apart. Such a procedure is possible, when
the probabilistic structure fulfills an ergodic property. '

The most simple probahility structure is the one discussed by P, Meissl [12], i.e. a
Gaussian distribution of the random variables with mean value zero. The probabilistic problems
have been intensively studied by S. L. Lauritzea [9]. Unfortunately, he proves that the
Gaussian probability distribution will imply that, as a result of the above mentioged
estimation procedure, variances of the estimated covariances will not go to zero, when the
number of products tends to infinity.

In the model used by T. Krarup [7], the anomalous potential T is supposed to be an
element of a Hilbert space of functions, which are all harmonic outside a surface (generally
a sphere) enclosed by the Earth and regular at infinity,

(A Hilbert space is a linear vector space (elements f, g) with an inner product {£, g3
and corresponding norm [[f|l. The space must be complete, i.e., every Cauchy-sequence
converges to an element of the space, see [3] or [13]). For all reasonable norms, this kind




of Hilbert space will have a reproduci. -y kernel, K(P,Q). The reproducing kernel is aa
element of the Hilbert space for either of its variables, P or @ (i.e., harmonic as a
function of P or Q) and symmetric K(P, Q)= K(Q, P). The kernel makes it possible to
represent the identity operator If) = f by means of the inner product, and is therfore
called the reproducing kernel (referring to the kernel of an integral operator):

() D (P)={K (P, Q), {Q)) =£(P)

The problem of "exact'' collocation is solved in the same strajght forward way in this
model a3 in the statistical model:

(10) F(B)=) o LK(P, P),

i=1

where the coefficients ¢, are determinoed by:

(11) {20, K(P, P} (ey)={x,1.

x; are the observed cuantities and £;, 2; are the linear functionals, which relate the
measurements to the anomalous potential, i.e.

(12) .E;_ (T)= Xy .

The notation £,£,K(P;, P, indicates that 4 is applied with respect to the first variable and
4, with respect to the second, (Note that the theory of sample functions [4] is a special
case of this model. The Hilbert space contains only 25 many harmonics as there are
observations and the inner product is chosen so that the coefficient matrix of (11) is an
“identity matrix).

The linear functionals are the same mapping, which relate the covariance function (N
to the covariance functions of the stochastic variable associated to the measured quantity.
1t is possible to interpret the reproducing kernel K(P, @) as the fundamental covariance
function (7}, see e.g. [18] or [9].

Hence, a practical solution to the estimation problem is the representation of the
covariance function by a reproducing kernel having as many of the known properties of the
covariance as possible. For further details see [21] and [23]. We will just mention what
this implies for the elements of the Hilbert space.

Because we only have gravity data available, the covariance function (8) is estimated
instead of the fundamental covariance function (7)., The above mentioned estimation pro-
cedure gives us a covariance function which is rotational invariant, i.e, only dependent on
the spherical distance § between P and @ and the distance r and r’ of the points from the
origin, The fundamental covariance function (7) will get the same property, and can hence -
be expressed hy:



<« / 2 41
13)  CTTo=) i (3r) Pulcosn),

i=C

where 7% are constants 20, called the degree-variances of the covariance function and R
less than or equal to a mean Earth radius. )

The reproducing kernel must then have the same property, This implies that the
norm of the Hilbert space must be rotational invariant and hence the set of harmonicity
equal to an open set ouiside a sphere with center at the origin and totally enclosed by the
Earth (a so called Bjerhammar-sphere). The use of this kind of norm has the advantage
that the usual solid spherical harmonics are orthogonal, (but not necessarily orthonormal)
and that all harmonics of the same degree will have the same norm:

o =0 for i';‘-‘.pbrj?‘lq
(14a) (V“; Vi) =w,fori=pandj=q, w;= 0.

w1 8y (8,A) 0sj<i
R ;
(14b) V“(P)=(';> {Ru_(s,}t) -i=j<0

where r,8, ) are the spherical coordinates of P and 5, and R, j the surface harmonics,
ef. [5] (1-67).

This implies that the approximation (10) or (6) will always be harmonic down to
the Bjerhammar sphere and by using the collocation method we obtain a solution to the
so-called Bjerhammar problem [5] p. 321. The actual potential of the Earth is only assured
harmonicity down to the surface of the Earth, One could then question whether the collo-
cation solution T obtained using the mentioned rotational invariant norm, would converge
towards the true T. T. Krarup in [7] and later in [8] proved a variant of the s¢ called
Runge theorem, which assures the existence of arbitrary good approx:matmns to T
bemng harmonic down to the Bjerhammar-sphere.

It Bnecessary for the computation of the coefficients { ¢, } in (11) and later
predicition using the approximation formula (10) that the lirear functlonals corresponding
to the measured quantities are represented by simple expressions.

The point gravity anomaly Ag, the deflections of the vertical €,7 and the height
anomaly can all be represented by linear expressions in spherical approximation:

(15) 24 (T)= -D(T) - 2 T(P) = Agy
(16) tg()=- 5 DT =5
(17) | (D= - e Dy T =T



{18y 2.(T)= g C» where o, A are the latitude and logitude of P and ¥ the
ference gravity, I

The formula for the mean gravity anomaly over 2n area A becomes

_1 j — _1 2
(18)  IpzM =3 J Iag (T) @ _Kf (-D;T-2T)dA.
’ A
Let us by Vi y denote the functions V,, of e, g. (14b) normalized by a suitable

rotational invariant norm. For the coefficients v, 4 of T, developed in a series with
respect to the harmonics Vy, we have (by definition):

(20) &y (T)= (Vg (B), T(P))=w,

Unfortunately, not every geophysical quantify can fit into this model. Only quaatities
related to functionals, which are elements of the space dual to the selected space of
harmonic functions can be represented in this way. (In the statistical model this will
correspond to exclusing random-variables with infinite variance). This excludes e.g.
mass-density anomalies and seismic information,

The application of the functionals (15) - (18) to the reproducing kernel (giving the
appropriate covariances) presenis no problems, The use of {20) is more simple than

it looks. The reproducing kernel has (cf. [13], p.42) a simple representation in terms
of the orthonormalized functions, ¥, :

(21) K(P,Q)-—-Ei Vi5(P) + iy (@)
=0 )=-14
(Note, that by using (21) and [5] (1-82) we can get (13)].
This means that:
Iy, K(P, Q) = {V, (P), i Z Viy(P) * Vg (Q)3

(22) i=0 j==1
Vi (@) * AV (P), Vi (P)) =¥y (Q),

I
~18
[

i=0 ~3

L
1]

where we have used the linearity of the inner product and ecuation (14a). This means that
the covariance between the random variable associate to the k,1 coefficient of T, vy and
the fundamental random variable X, is equal to the value of the normalized solid spherical
harmonic Vy; evaluated in Q. In fact this is a simple covariance model.



Different rules of thumb are used for the computation of the functions 25’;‘:,; applied
on K(P,Q). The starting point is the covariance function of the point gravity anomalies
(8) developed in a Legendre series similar to (13) but with other coefficients, gZ. The
most simple rule just breaks off the series for degree 180/v where v is the diameter
of the area in degrees. For a spherical cap it is possible to compute the smoothing
coefficients 8; given by P. Meissl [12]. Neither one of these two are completely satis—
factory., A practical solution is to multiply the coefficients of by a damping factor p'*?,
p<1. This kind of damping has a simple interpretation, which can be seen by multiplying
the temg, in (13) by p. The mean apomaly functional is represented by a point anonlnaly
funetional, where the point of evaluation has the distance from the origin equal to r+p™",
Because of the mentioned representation problem, mean gravity anomalies of the equal
angular or equal area {ype are not (in my opinion} a very useful type of geodetic data.
Mean gravity anomalies over spherical caps would be somewhat more useful,

Note, finally, closed expressions for the covariance function can be obtained if
the quantities 77 in (13) are simple rational functions of i, ie., e.g.: '

(23) 5= 1 s L or L ,
ir(i-1) (i-1)- (1-2)  (i~1)(i-2)(i+5)
ci. [21] or [22].

Some implementation problems

The approximation (10) allows us in principle to compute an approximation T
from 2ll existing gravity data and deflections. It would be hoth impossible and ridiculous
to try to do this. Generally, we would be more interested in a set of local solutions,
which agree well in common areas. The later use of the collocation solution for
prediction purposes will then only involve the computation of the product sum of a
limited number of covariance values and coefficients ¢y in (10), Thus, we must in
some way try to exclude the influence of the gravity anomalies in Denmark, when we want
to predict a gravity anomaly in Ohio.

In prediction theory, this is done by estimating a local covariance function and
subtracting the local mean value of the data from the cbserved values. The local covariance
function will give a prediction model in which it is reasonable to exclude data which have
spherieal distance, ¥, from the point of prediction, greater than §,, where {§, is the
value of the first zero-point of the local covariance function.

Now, the behavior of a local covariance function can often be predicted from the
size of the area over which the considered gravity anomalies are distributed, By



considering a local sample and subtracting the mean value, we are in fact trying to
exclude the effect of the harmonics of wavelengths greater than the diameter, d°, of
the area. As a rule of thumb, the harmonics of degree i, i< 180/d are excluded.

T

s /\ .CT% = mean valye _

' —>y

Figure 1

For an area of diameter 3°, this means that the quantities 7° in (13) will.be zero for
i< 60. It is possible to give this heuristic consideration a more precise interpretation.

Let us consider an example, where we had determined n potential coefficients §“
and Cf (cf. [19], p.2). We will denote the corresponding coefficients, normalized with
respect to the norm of the Hilbert space, by {v,}, using a single subscripting by i or j,
i, j=1...,n. We will use the same subscripting for corresponding functionals 4, and
normalized solid spherical harmonics, i.e., so that the repreoduc ing kexnel can be
expressed by:

K(P,Q) =) Vi(P}* V{(Q).

1

AT e

Furthermore, let there be given m other observations {x,}, subscripted by p or g,
psQ=1,...,m and corresponding linear functionals Bys &y

Using (14a) and (20), it is easy to see that the submatrix of the coefficient matrix
of the normal equations (11), formed by the covariances between the potential coefficients,

becomes the nX n identity matrix (I). The covariances between the coefficients and the
data [x,} become: :

(24) Ly (AL KR, Q)= L (Vi (Q)=¢¢ >

where the constant ¢, is the contribution of the i~th harmonic to the measured quantity
% . |

We get the normal equations:

(25) 1 {cay} {a,} {v,}

{qu} {‘Q‘p L K(P, Q” {bp } {Xq }



and the approximation:

n

[~

(26) T =) aV,@+

j=1 p=1

b, * 2, K(P,Q)

From equation (25) we get: .
{a}=1{v)-{cy}{p,}] and
(e} lwd-{ead {on 1 Iy} + (2, 8, K@, Q) (b, )= {x,} or
@0 (% L KR, @)~ [eg a1 » ()= {xg) - fe} [w)
The coefficients in the mX m matrix at the left~hand side in (27) are:
Ly £aK(P,Q) - {cg } e 3= £, £, K(P, Q) - {2, Vy (P)* £,V,(Q)]

= zpzq(i Vi (P) * V(@) ~ \i Vi(P)e V;(Q))

i=1 =1

76

V() Vi@ )= 2 Ky(P, @)

n+1

=2y %4 (

i

It

The right hand side of (27) is the data {x,} minus the influence of the reference field

To@ =) ViY@

i=2

Hence, the use of chserved potential coefficients makes it possible to regard the
approximation T(Q) as the sum of a reference field Ty and an approximation T, . The
latter is determined using anomalies now referring to T, and a covariance function
(reproducing kernel) K, (P, Q) which is equal to the original covariance function having
the terms corresponding to the degree and order of Ty removed.

The new covariance function will generally make the remaining observations less
dependent. For example, using the potential coefficients of [19] up to and inclusive of
degree 20 and a model where 1= 1/(i-1) - {(i-2)) will give a representation of the covariance
function of the gravity anomalies, which has its first zero-value for ¢=5°. The correspond-
ing empirical covariance function has its first zero value for 43350,

Even when a reference field of order 20 is used, the covariances will be too large.
Since a field of this order is about the best we have at present, another way must be
found to construct an improved reference field. The 1°x 1° mean gravity anomalies
contain a kind of damped information, which we can use. The equations corresponding



to a set of n mean gravity anomalies {A_gi} . i=1,...nand a set of e. g. m point anomalies
and deflections {x,}, p=1, ...m are:

(29) [C(EEEUA—E:.)} {C(f-_gpxp)} {a,} {ZP:'J}

Bz, x0)] [Cons 501 ) 16,1 (%3

ot in more compact form;

{Cts C '{ai}Jl‘-'gJ}
Cat  Coqf [bp) [xg
We then have, as above,
_ -1 5= -1
&1"‘015 ;.;g]-Cid Cipbp and
CiqT'CIJ—l EJ+(CDQ—CLJCH—1Cip}bp = Xy or
(30) (Cpa=Ciy' C1y™  Cyp )by = %3 ~Cyg” Cyy HAgy.

Introdicing the function T, (P),
(31) T, (P) = Z dy* C(T, g, [ }={Cy) ™ {Agd

=3

We see that the right band side of (30) is the predicted value of {x,} using mean gravity
anomalies,

The change in the covariance function is not so chvious, but it is reasonable
to expect that the harmonics up to degree ~ 90 have been approximately removed.

A possible method for the estimation of the maximal order of removed harmonics
is to compute gravity anomalies using the reference field To(P)+ T(P). Then, the
empirical covariance function of the gravity anomalies is computed and approximated
by covariance functions derived from (13) with different number of coefficients equal
to zero. The representation which pives the best approximation of the empirical
covariance function, will then furnish us with an estimate of the numbers of removed
coefficients.

For a more general discussions of some of these problems, see Moritz [16].

Some results
" The described collocation procedure has been first tested in Denmark ef. [23],

using the algol-program described in [20], and later in Ohio, U.S.A., using a further
refined compuier program, now written in the IBM 360/370 version of FORTRAN V.
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A 2730'x 3740 square in Qhio was sclected (see figure 2) because it contained good
gravity coverage and a consisient set of 15 paivs of deflections of the vertical, cf. [17].
 the middle of the selected area, Badekas and Mueller [17] have computed a local
approximation to the geoid. The dellections were transformed into an approximate geo-
centric reference system by using the datum-shift components for NAD 1927 given in [11].

A reference field T, was defined by the 20 % 20 solution given in [19]. An improved
veference field T, were derived from (13) with T$=a constant/(i* (i-1)}, i>20 and zero
for i< 20. The mean gravity anomalies were represented hy point anomalies at 10 km's
height, because this height gave a satisfying damping of the covariance function. The
ratio between the radius of the Bjerhammar sphere and the mean radius of the Earth
was 0.998. Then approximately 21 % 21 point gravity anomalies were selected (spaced
as equally as possible with 7'30" distance in latifude and 10' distance in longitude).
11x 11 of these points (A® = 15', A\= 20") were used as measured values. (See figure 2).

A
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. * . . * . . . . * *
. . - ‘ ] » . » » [ .
. . . N [ . v . ’ . ’
4o° 4
' . . . » * * . . .
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¢ oo © o o0 .
N . * . . . g -
= i ¢ g & 9 o © o p
i 4 13 W o fo 9 2
. - - . ) . . . . .
v » ' . * - ’ + ' 4
29 1
.
" . . - . ’ ’
P . . - . ’ .
» 4 . L
. . . . . .
L
32' 4 1 $ 1 1 3 'kl
g5 -g4° -ga° -82° -8

+ Qravity anomaly
o5 Deflection of the vertical, station no. 5, ci. Table 2.

Fig. 2. Distribution of the 117 gravily anomalies used as observatious in
the compuiation of the approximations T, and T, and the 15 pairs of
deflections of the vertical used as test values for T, and as cbservations in

. the approximation T,.
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The remaining 299 points were used as test values, i.e. the gravity anomalies
were predicted and compared with the observed values, The empirical covariance
function of the anomalies with respect to T, and T; was computed. It was estimated
that the fivst 110 harmonics, 75, should be removed from (7) to give a proper represen-
tation of the local covariance function.

Using this covariance function and the 11x 11 (actually 117} point 2nomalies an
approximation T, was computed. Then the 299 point values and 2% 15 deflection components
were predicted and compared with the observed values, c.f. Table 1, 2 and Figure 3,

_ Test Data
Gravity Deflections of the vertical
anomalies | Latitude component £ Longitude componentn
Number of
test values 299 15 15
"Relerence |Mean VAriance Meéan variance Mean VAariance
field mgal mgal® arc sec arcsec® arc sec arcsec®
NAD 1927
and int. .
gravity ~-7.0  331L.7 1.4 2.1 1.7 25.2
formula
Datum
shift
(11, 1.2  200.0 0.2 1.7 0.8 15.0
TG-F T]_
Datum
shift
(11], 0.4 58.5 1.2 1.2 -0,6 2.4
Tg+ Ty+ T:g
Datum
shift
111, 0.3 50.1
To+Th+T,

Table 1. Comparison of predicted and measured gravity anomalies and deflections
of the vertical. The table shows the mean and the variance of the difference between
observed and predicted values using different approximations of T as reference fields.
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Note in Table 1 and 2 the relatively big systematic differences between the measured
and predicted deflection components, For a more well distributed set of deflections,
such differences can be used to determine a corrcction to the used datum-shift
components, see [23].

X —__r—rw—fﬂ ﬁ H_IJ_ T Ll,.o Suli

-30 ~20 10 o o~ maal
Fig. 3. Iistogram of differences between predicted and measured gravity

anomalies using the approximation T, + T, + T, for the computation of the
predicted values, Total number of anomalies 299,

The gravity data used for the computation of T, was then used together with the
2% 15 deflection components. This gave singularities in the normal-equations. The
covariance functions were then changed so that only the first 90 75 were set to zero
and the ratio between the radius of the Bjerhammar sphere and the mean radius was
changed to 0.999. This removed the singularities and an approximation T, was
computed. The gravity anomalies could then be computed at the test points and the
prediction resulis were somewhat improved, cf. Table 1.

An approximation to the geoid was computed using T, + Ty + T for the same
area as used in [1], see figure 4.

Conclusion
Computation tests show that the anomalous potential can be approximated very

well in areas with good gravity coverage or with a reasonable number of deflections
of the vertical. A gravity coverage with station equaliy spaced 25lom apart will
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represent about 75% of the variation of the anomalous putential.

Tests described in [6] indicates that collocation gives predictions of at Iedst the
same quality as ofther least square prediction methods.

Good results have also been obtained using collocation as a global approximation
method, cf, Lelgemann [10]. Computation experiments by the author show that the
method, vusing a selection of 5°x 5° mean gravity anomalies so that maxima and minima
are represented, gives a beiter representation of the mean gravity anomaly field, with
less parameters, than a representation by spherical harmonics.

A problem not discussed here is the many inconsistencies in the available data,
The first order triangulations need to be readjusted before we e.g. can get consistent
deflections of the vertical. The next step must be to combine the approximation method
described above with the adjustment of first order triangulations as described by Eeg
and Krarup in [2].
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