manuscripta geodaetica Vol.8B(1983)249-272

A Comparison of Methods for Computing
Gravimetric Quantities from High Degree
Spherical Harmonic Expansions

C.C. Tscherning, R. H. Rapp, C. Goad

Summiry

In tne past few years geopotential coefficients have become available to
degree 180. These coefficients can be used to calculate various gravimetric
guantities such as height anomalies, gravity anomalies and disturbances,
deflections of the vertical etc. 1In doing so special care is needed to
insure computational stability in the generation of the associated Legendre
functions and their derivatives.

This paper describes four different programs that can be used for selected
calculations. A program by Rapp and one by Tscherning/Goad are designed
to compute a number of different quantities at one time. The programs

by Rizos and Colombo are designed to calculate one quantity on a grid
which may be regional or global (the Rizos program) or global only (the
Colombo program).

A single point calculation with five gravimetric quantities takes approx-
imately 0.5 seconds of computer time with a field to degree 180. The
computation of a global 1°x1° grid takes 47 seconds using a 180 field
and the Colombo program.

The Fortran program designed by Tscherning and Goad is given in the ap-
pendix of the paper.

1. Introduction

The computations of gravimetric quantities from spherical harmonic expan-
sions has grown in importance with the development in the past few years
of high degree spherical harmonic expansions of the earth's gravitational
potential. Specifically of interest are the disturbing potential (T),

the height anomaly (z), the gravity anomaly (ag), the gravity disturbance

(8g), and deflections of the vertical (£,n), and higher derivatives.
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The evaluation of these quantities now can involve the use of published
spherical harmonic expansions to degree 180 with higher degree expansions
in the realm of reality. Because of the large number of coefficients

in these high degree expansions, it is important to seek efficient algor-
ithms for evaluation of the quantities of interest. In addition, algorithm
formulations must be chosen to assure computational stability.

The purpose of this paper is to examine several computer programs in terms
of their basic technique and applicability, and to compare the programs

in terms of computer time for the same computational effort. The algorithms
used here will also be of value in other disciplines such as geomagnetism.

Included with this paper is a Fortran program that can be used for the
computation described in this report. The main program was originally
written in Algol by Tscherning and described in Tscherning and Poder (1981).
It was then translated and implemented in Fortran by Goad.

2. Fundamental Equations

The basic equation for representing the earth's exterior harmonic potential
V at a point whose coordinates are r (geocentric distance), Q (geocentric
latitude), and x (longitude) is:

_ kM 2 a0 < s = .
V(r,p,r) = - [1+n22(—) mZO (Cnmcos mx + Snmsm mA) an(sm w)] (1)
where: kM i s the geocentric gravitational constant;
nm® onm are the fully normalized potential coefficients
a I's the scaling factor associated with the
coefficients;
P (sin v) are the fully normalized associated Legendre
functions.

One can define the disturbing potential, T , by removing from V a normal
potential implied by an equipotential reference ellipsoid or some defined
set of potential coefficients. W have:




T(rswsx) = V(r,u,a) - U(r,u,A). (2)

Given values of T the various quantities of interest can be computed.
For example we have:

C:l
.
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Trese equations represent spherical approximation in some cases, Or com-
ponents in a radial direction in other cases. Specific equations for
each of these quantities may be found, for example in Rapp (1982).

In reality the expansion in equation (1) is not taken to infinity but

to some finite degree. |If this degree is 180 there will be 32761 potential
coefficients involved in the calculation. The evaluation of (1) or any

of the other equations can be done under various circumstances. In the
following sections we briefly discuss published procedures or computer
programs.

3. The Rizos Program (SIMDAT)

Rizos (1979) described a computer technique for the evaluation of the

height or gravity anomaly from potential coefficients for points defined

on a two dimensional evenly spaced geographic grid. The original program
used at The Ohio State University for this type of calculation was received
from NASA in 1978. The program was called SMDAT. This program was designed
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to generate values given a specified latitude and longitude interval in

an area defined by latitude and longitude limits. This area could be a
local region or it could be the whole sphere. For each latitude the fully
normalized associated Legendre functions are evaluated by recursive for-
mulae that are described in detail by Singh (1982). The longitude depen-
dent computations are first started by the "rotation" of the potential
coefficients so that they refer to the longitude origin at the west edge
of the area of interest. The calculation for a given anomaly is then
based on simplification in the sin MX or cos MX computation resulting
from having points equally spaced in longitude.

4.  The Colombo Program (SSYNTH)

Colombo (1981) has described the theory and computer program that can

be used for the efficient computation of height or gravity anomalies from
potential coefficients. The program of interest is called SSYNTH. This
program can be modified to incorporate fully normalized Legendre function
calculations using a recursive algorithm described by Colombo and in more
detail by Singh (1982). The calculation is designed for a global grid

at a specified latitude and longitude interval (as°). The original SSYNTH
has been modified slightly, for the test described, by the introduction
of the (a/r)M term in the disturbing potential, and several other changes.

The SSYNTH subroutine was designed for the calculation of area means or
point values. The latter are the quantities of interest in this discussion.
The Legendre functions are first computed for the grid interval recognizing
that there is a grid symmetry with respect to the equator so that values
are computed for latitudes above the equator. Colombo then applies a

Fast Fourier Transform (FFT) technique to compute sums of series along

the N (N=180°/a6°) latitude rows. Two latitude rows are formed at the
same time to take advantage of the Legendre function odd or even symmetry
with respect to the equator. Colombo points out that usual F-T are most
efficient when the grid is such that N (the number of intervals in the
grid) is an integer power of 2. Since most of our grids are based on
360°/a6° which contains factors other than 2 a special FT routine known
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as the mixed radix FFT must be used (Singleton, 1967). In the revised

version of SSYNTH this procedure is implemented by subroutine FFTCC of
the IMSL subroutine library.

5.  The Rgyp Program

This program (Rapp, 1982) is designed for the calculation of the five
guantities listed in equation (3) an a point by point basis and is rep-
resentative of the may programs that use similar recursion procedures.
The normalized Legendre functions and their first derivatives are generated
for a specific latitude using the recursive algorithm described by Colombo
(1981). This subroutine (LEGFDN) wes checked for stabil ity by Colombo
using double and quadruple precision for order (m) = 350 and degrees (n)
from 350 to 400, for 2.5° < ¢ < 90° where € is the co-latitude. This
subroutine does not compute the first derivative at the pole.

This subroutine is written such that the needed functions for a given
order m and all degrees to the highest madimum degree are computed in
one call to the subroutine. The subroutine is repeatedly called for
0<Lmx< N where N is the maximun degree being used in the expansion.

For discussion purposes visualize the associated Legendre functions in
a lower triangular matrix where the rows correspond to degree n and
the columns correspond to order m.

For a given m , the subroutine first calculates for 0 < n < m the diagonal
elements corresponding to the diagonal passing through the n = m location.

V¢ have:
5 _ 2n+1 . =
an(cos 8) —/-—~—2n sin® Pn—l,n-l(cos 8)
Poolcos @) = 1.0

Py lcos E) =/3 sins. (4)
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Then the following element is computed (with n = the given m):

P cos 8) =/ 2n+3 cose Pn,n(cos 8). (5)

n+l,n(

Then the following recursive relationship is used to calculate the remaining
values of P__ for m+2 < n < N

nm
P (cos o) _[(zn-1) (2n+1) coso P (cos 6)
nm \j (n-m)(m+n) n-1,m
JEm ) 5, (cos o) )

For the derivative of P__ we first compute d_ngé&Q) for n equa

to m using the following equation recursively:

dPpnfcos 8) _ [2n+l, . dPn_1 pn- =
TS o (sine d>ﬂ—]-e + €0SH Pn—l,n—l(cos 6)) (7)

After this value is computed for the given m , the remaining derivatives
for n from m+l to N are computed from the following expression:

Py . _L [n P (cos e)cose -[(”zg"ngg‘f””)} P

n-1,m

(cos e):] (8)

9.'3011:0 (9)

This program generates the cos mx and sin mx terms using recursive relation-
ships. But the program does not implement efficiencies that exist if
a uniform longitude grid were being computed.

6. The Tscherning/Goad Program

V¢ first discuss an alternative form of equation (1). Let us put q = a/r
and t = sin y . Then (with N the maxmun degree of the expansion):
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V(r,p,1) = g kM ? P (t)q" C._ cos mx +
" m=0 " |n=m " i
N n .
nzm P(t)a" S - sin mx] (10)
\ kM l—Vl cos mx + V2 sin ma
= 0 r m m I
where
vi= §’ P (t)" . JCm, =1 (11)
m n=m Sam > i=2

If the quantities Vm are computed for one set of values of ¢ and r
(and subsequently stored), then it is possible to compute the value of

V. for varying values of A, by simply evaluating the factors cos (mx)
and sin (mx) and then evaluating the product sum (10). This fact is used
in the subroutine GPOTDR given in the Appendix. Further computational
savings are possible, if V is evaluated at a set of equidistant points
in the interval from 0° to 360°, but this requires a small change of

the subroutine.

At this point we describe the concept of the Clenshaw summation, (Clenshaw,

1955). Suppose that we, for a set of functions Pn(x), n=m...,N of

one or more variables x = (x;, X9s ... X,) have:
Pm+1(x) + am+1(x)Pm(x) =0 (12)
Pn(x) + an(x)Pn_l(x) + ann-Z(x) =0, n=m2, ... , N (13)

where an(x) is a function depending on x and bn a constant. W may
express this in matrix form as:
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Ap = po
where
§ 1
am+1
bm+1
A = 4
| 0
P (x)
m+1(x)
p = ¢
| Py(X)
The am S{(x) of the series
N
S(x) = 7 vy, P (x)
n=m

where s

am+2

is a vector with elements

O.vievvnnn.. 0
Ovevvennnnn. 0
) 0
O........ bNaNl
¢ \
P (x)

0
¢ >

0
\ P

o
~—

—
[y
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AT is an upper triangular matrix with determinant equal to 1, so the

solution vector s = (AT)"ly may be found easily. If we put
Sy+2 = Sy+p = 0o then

Sy = "Rp41Snel " bn+25n+2 t Y n= Nyov'vy m (18)
SO

S(x) = s P (x) . (19)

This (equation (18) and (19)) is the Clenshaw algorithm for the summation

of series which fulfill equations (12) and (13). (The algorithm is modified
slightly, if only equation (13) is fulfilled). Algorithm for the computation
of the partial derivatives of S(x) with respect to any X5 can be found

by taking the derivatives of the equations (17) - (19). Also the definite
integral with respect to any . over an interval [a,b] may be computed,

if the integrals of the functiohs p (x) are related to the values of

Pn(x) for x,=a ad x;=b in ansimple manner.

The advantage of using Clenshaw summation as compared to the usual method
of finally evaluating Pn(x) and then forming the scalar product (yTy)
is of numerical character, as discussed in Clenshaw (1955) and Gerstl
(1978). The number of operations (multiplications and additions) are
nearly the same.

The numerical advantage consists in a decrease in the loss of significant
digits during the summation. This is caused by the use of the identity,
equation (13), in the evaluation of the sum S(x).

Using this algorithm, it was possible to evaluate the am of a spherical
harmonic series with maximal degree and order 180 representing the Earth's
gravity potential on a computer using only 10% significant digits, whereas
the method described by Tscherning (1976 a,b) did not work.
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When used for a spherical harmonic series, the Clenshaw-summation must
be done in two steps, because different recursion formulae (corresponding
to equation (13)) are valid for varying degree and varying order. For
details see Tscherning and Poder (1982, equation (30) - (31b)).

Furthermore, in practice the coefficients Cpm and Spm will not be
given, but the corresponding fully normalized values Com > gnm will

be available. This makes the constants ap(x) and by slightly more com-
plicated, because a number of square-roots must be evaluated as in (4)
through (9). These square-roots may be evaluated and stored once and
for all, (which is also supposed to have been done before calling the
subroutine GPOTDR). A small further computational saving i s made by
using quasi-normalized coefficients and associated Legendre functions:

= _ mn-m)!7 %%
an(t) h an(t)[ n+m !:I (20)
c C
nm i nm ntm) 1 7%
- - ' [%n-mi!] =
Enm (2n+1)% for mO
— . (21)
nm (2(2n+1))2 for m#0

The Clenshaw algorithm may, as mentioned above, be used for the computation
of the partial derivatives (of any order) of the sum of the series. Deriv-
atives with respect to longitude become undefined at the z-axis. One

way to circumvent this problem is to compute the derivatives with respect

to the coordinates (x,y,z) of a local Cartesian coordinate system having
its origin in the point of evaluation, the x-axis pointing North, the y-axis
pointingEast and the z-axispointingin the direction of the radius-vector.
At the z-axis this coordinate system will have its axes parallel to those

of the original coordinate system.
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In this coordinate system, the Clenshaw algorithm is easily modified as
to permit the evaluation of any partial derivation for points at the z-axis,
(except for the point (0,0,0)).

The implementation of the primary equations of this section using the
relationships in equation (3) was originally done in an Algol program
described in Tscherning and Poder (1982). This program wes translated
into Fortran at the National Geodetic Survey with additional subroutines,
needed for the actual computations, added. The resultant program is given
in the Appendix.

7. Timing Tests

The four programs described above have been run at The Ohio State University's
Amddl 470 V/8 computer using the Fortran H extended (enhanced) compiler.
Computations were first mede to meke sure that the programs yielded the

same results for the cammmn quantities being computed. The programs were

then run under several circumstances to obtain timing comparisons using
potential coefficient sets complete to degree 180. The computer times

to be quoted exclude the time for inputting the potential coefficients

and removing the reference field.

The first test was for a set of points having different latitudes and
longitudes. The results are shown in Table 1.

Table 1

Computer Time for Computation of the Quantities Given in
Equation (3) at Oe Point

Program* Time
Rapp 0.46 seconds
Tscherning/Goad 0.48 seconds

*(Timing estimates for the Rizos/Colombo programs are not included in
Table 1, because these programs are not suited for single point
csrnputations).
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In the next test the Rapp, and Tscherning/Goad programs were modified

so that only the height anomaly would be computed. This test also involved
the Rizos program for calculations at a given latitude with 360 longitude
val ues at a 1° interval. The results are given in Table 2.

Table 2

Computer Time for Height Anomay Computations
at Ore Latitude and 360 Equidistant Longitudes

Program* Time (seconds)
Rapp 15.59
R zos 0.39
Tscherning/Goad 1.91

*(Timing estimates for Colombo programarenot included in Table 2 because
this program is not suited for this type of computation).

The next test was designed to find the computer time needed to calculate

the height anomalies on a global 1°x1° grid. For this test the results

in Table 2 for the Rgop and Tscherning/Goad program were extrapolated

by multiplying by 180. The Rizos and Colombo times were determined from

actual runs. The results are given in Table 3.

Table 3

Computer Time for the Generation
of a Global 1°x1° Grid of Height Anomalies

Program Time (seconds)
Rapp 2806*
Tscherning/Goad 344*
Rizos 66

Col ombo 47

*extrapolation
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8. Discussion of Timina Estimates

Fom Table 1 we see that the Rgp and the Tscherning/Goad programs have
comparable point to point calculation times which was expected.

Fom Table 2 we see that the Rizos procedure is the fastest method followed
by the Tscherning/Goad program followed by the Rgp procedure, a distant
last. The Rgop procedure performs poorly in this type of test as no ef-
ficiencies are taken into account when the data is given an a uniform
longitude grid.

For the computation on a global grid the program by Colombo is the fastest
followed by the Rizos program.

9. Numerical Examples

Whn testing any computer programs it is convenient to have test values.

V¢ give in Table 4 such values (taken from Rapp (1982)) for five cases
using three different sets of potential coefficients to degree 180. These
sets are those of GEM1OC (Lerch et al., 1981), Repp (1981), and Rgp (1978).
The reference field was that associated with the Geodetic Reference System
1980 (see e.g. (Rapp, 1982, p. 11)). The latitude (¢) given is geodetic.
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Table 4

Sample Computed Values
(reference flattening = 1/298.257222)

$° A° h(m) z(m) ag(mgals) ég(mgals) g" n"
21° 1° 0 Rapp78 34.46 20.07 30.65 0.68 -0.25
Rapp81 30.56 7.73 17.11  0.60  0.40

GEMIOC 28.37 4,12 12.83 -0.10 0.21
21" 45" 0 Rapp78 -9.76  -2.82 -5.81 -5.25 11.63
Rapp8l -9.58 -5.55 -8.49 -4.24 10.63
GEMIOC -9.68 -8.46 -11.43 -2.23 8.98
5" 79" 0 Rapp78 -104.42 -84.60 -116.62 -1.43 0.64

Rapp8l  -107.48 -91.84 -124.81  0.02  0.65

GEMOC ~ -106.20 -87.66 -120.23 -1.13 -1.04

5" 79" 10000, Rapp78  -103.58 -78.90 -110.52 -1.63  0.35
Rapp81  -106.58 -85.49 -118.02 -0.22  0.50

GEMOC ~ -105.35 -80.51 -112.66 -1.12 -0.93

87" 21" 0 Rapp78 15.43  -1.46 . 3.32  1.32  2.37
Rapp81 20.23 8.86 15.12  0.81  1.86

GEMIOC 18.38 3.58 9.26  2.59  4.05
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10. Summary and Conclusion

This paper has discussed four computer programs that can be used for the
calculation of gravimetric quantities from high degree spherical harmonic
expansions. The programs of Rapp and Tscherning/Goad take about the same
amount of computer time for point by point calculations. The Tscherning/
Goad program has an advantage in that coding exists for the evaluation

of the second order derivatives of the disturbing potential.

I f computations of one quantity (such as the height or gravity anomaly)
are to be done in a grid of limited geographic extent the Rizos program
is most efficient. If the calculation of all primary quantities are of
interest in such a grid the Tscherning/Goad program is most efficient,
since the Rizos program may only compute one quantity.

If a global grid of a single quantity is needed the Colombo procedure
is fastest. However the Rizos program is still relatively efficient and
has the advantage of also being used in a limited geographic grid.

At times in the past some authors have expressed concern about the efficiency
of using high degree spherical harmonic expansions. The computer programs
discussed in this paper demonstrate that efficient procedures do exist

for working with such expansions when the programs are chosen considering

the application., The proper choices can be made using the results discussed
in this paper.
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00001 C
36002 C
ccco3 C
cocod C
00005 C
000c6 C
00007 C
0co08 C
00009 C
00310 C
00011 C
ooo012 C
00013 C
00014 C
00015
09316
00G17
02018
00019
C0020
03021
GC022
00323
60024
03025
60026
00527
00028
03029
00030
00031
00032
06033
Q00034
00035
00036
00037
00336
00239
00010
00041
00042
00043
Q0044
00345
00346
00047
00048
0C049
G0050
00051
6T052
00053 C
03054 C

PROGRAM TO ILLUSTRATE THE USE OF SUBROUTINE GPOTDR(CLENSHAW SUMMATION
OF AHNOMALOUS POTENTIAL IN SPHERICAL HARMONIC FORM WITH FIRST AND/OR
SECOND DERIVATIVES | F DESIRED) AND THE ASSOCIATED SUPPORT ROUTINES.
SUBRCUTINE POT1 IS THE DRIVER FOR GPOTDR WHICH INITIALLY SETS

THE VALUES OF RAPP'S (1978) 180-Tii DEGREE SET OF COEFFICIENTS.

SINCE GEODETIC QUANTITIES WERE DESIRED WITH RESPECT TO GRS80, EVEN
NORMAL ZONAL HARMONIC COEFFICIENTS ARE SUBTRACTED FROM THE TOTAL
POTENTIAL IN SUBROUTIHE POT1. SINCE THE ANOMALOUS POTENTIAL

AND ITS 3 FIRST DERIVATIVES ARE DESIRED, IORDER IS SET TO 1

IN COMMCN POT1CM AND THUS THIS EXAMPLE DOES NOT EXERCISE THE SECOND-
DERIVATIVE CAPABILITY.

IHPLICIT REAL®8 (A-H,0~Z)
|0 READ(5,20,END=100)PHI,DLON, HT
20 FORMAT(3D24.16)
CALL POT1(PHI, DLON, HT,UX, X|, ETA,DIST)
WRITE(6,30)PHI,DLON, HT
WRITE(6,30)UN,DIST,XI,ETA
30 FORMAT(1X,4F12.2)
WRITE(6,30)
Q@ TG 10
100 STOP
END
BLOCK DATA
IMPLICIT REAL*8 (A-H,0-Z)
LOGICAL INIT
LOGICAL FIRST
INTEGER OLDORD
REAL®*4 C,CO
COMMCN/GPOTCM/OLDT, OLDR, IZ, FIRST, OLDORD, | 1,12,13,14,
. I5,16,17,18,19,NMAXSV
COMMON/POT1CM/SU( 1810) ,DIN(20) , G, FLAT, AE, OMEGA, INIT, IORDER, NMAX,
. NEGN
COMMON/PIDTR/PI, DTR
CGMMON/TRANCM/TOL , MAXIT
CGMMON/CM/C20IN, G1(3),62(3,3),CM3,CM2,CM1,C0,C(32760)
DATA 12/0/
GATA FIRST/.FALSE./
DATA OLLT/0.DO/,0LDR/0.D0/
DATA OLDORD,I1,I12,I3,I4,15,16,17,18,19/10%0/
DATA NMAXSV/C/
DATA DJN/20%0.50/
DATA INIT/.TRUE. /
DATA IORDER/1/
DATA NMAX/180/
DATA PI/3.141592653589793D0/
DATA DIR /.1745329251994330D~1/
DATA TOL/1.D-14/,MAXIT/10/
END
FUNCTICN GPOTDR(PO,KMAX,ORDER,SU)

00055
00056
00657
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081

00082
00083
00084
00085
00086
00087

00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101

00102
00103
00104
00105
00106
00107
00108

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

GI REG.NO. 81013 AUTHOR -C.C.TSCHERNING, DANISH GEODETIC INSTITUTE
JULY 1981 IN ALGOL REF. (2)
-C.C.GOAD, NOAA/NOS/NATIONAL GEODETIC SURVEY
HAY 1982 TRANSLATED TO FORTRAN

REFERENCES:

(1) TSCIHERNING, C.C.:0N THE CHAIN-RULE METHOD FOR COMPUTING
POTENTIAL DERIVATIVES. MANUSCRIPTA GEODAETICA, VOL. I,
PP. 125-141, 1976

(2) TSCHERNING, C.C., AND PODER, K. : SOME APPLICATIONS OF CLENSHAW

SUMMATION, PRESENTED AT VIII SYMPOSIUM ON MATHEMATICAL GEODESY,

COMO, ITALY, SEPT 7-9, 1981

THE PROCEDURE COMPUTES THE VALUE AND UP TO THE SECOND-ORDER
DERIVATIVES OF THE POTENTIAL OF THE EARTH (W) OR OF ITS
CORRESPONDING ANOMALOUS POTENTIAL(T).

THE POTENTIAL |'S REPRESENTED BY A SERIES OF SOLID SPHERICAL
HARHONICS, WITH UN-NORMALIZED CR QUASI-NORMLIZED COEFFICIENTS.

THE CHAIN-RULE |'S USED ALONG WITH THE CLWSHAW ALGORITHM.

THE ARRAY C MUST HOLD THE COEFFICIENTS C(1)=C(1,0),C(2)=C(1,1),
C(3)=S(1,1), ETC. UP TO C((N+1)¥#2-1=S(N,N). C(0,0) 1S STORED IN CO
WHICH IMPLICITLY ACTS AS C(0) (SEE THE COMMON BLOCK CH)

PARAMETERS:
(A) INPUT VALUES:

NMAX
THE ABSOLUTE VALUE OF NMAX | S EQUAL TO THE MAXIMAL DEGREE AND
ORDER OF THE SERIES. NEGATIVE NMAX INDICATES THAT THE COEFFICIENTS
ARE QUASI-NORMALIZED.

ORDER
ORDER OF DERIVATIVES
0 FOR POTENTIAL ONLY
1 FOR POTENTIAL AND FIRJT DERTYATIVES
2 FOR POTENTIAL, FIRST DERIVATIVES, AND SECOND DERIVATIVES

PO
ARRAY HOLDING POSITION INFORMATION. PO(6)
PO(1)=P, THE DISTANCE FROM THE Z (ROTATION) AXIS,
PO(2)=R, THE DISTANCE FROM THE ORIGIN,
PO(3),PO(4) COS AND SIN OF THE GEOCENTRIC POLAR ANGLE(COLATITUDE),
PO(5),PO(6) 9N AND €COS OF THE LONGITUDE.

C
C((ABS{NMAX)+1)##2.9)
CM3=GM
CM2=A THE SEMI-MAJOR AXIS OF THE REFERENCE ELLIPSOID
CM1=THE ANGULAR VELOCITY (=0,WHEN DEALING WITH T)
C0=1DO FOR W AND =0.DO FOR T

ARRAY OF C'S AND S'S DESCRIBED ABOVE
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00109 C

00110 C 00163 |1=T+1 N
00111 C  ROOT(K)=SQRT(K), 0.LE.K.LE.2(ABS(N)+1)=1 WHEN NMAX.LT.O 00164 I2=114 1)
00112 C 00165 I3=I2+I )]
00113 C 00166 | 4=13+1

00114 C(B) RETURN VALUES: 00167 I5=Ik+I

03115 C 00168 16=I5+I

00116 CGL AD @ 00169 I7:16+1

00117 C  THE RESULT IS STGRED IN GL A\D G2 /S FOLLOMS: 00170 I8=17+41

00118 C 00171 I19=I8+I

00119 € G1(1)=DW/DX, G1{2)=DW/DY, G1(3)=DW/DZ 00172 100 CAPN=NMAX

00120 C G2(1,1)=DDW/DXX, G2(1,2)=G2(2,1)=DDW/DXDY, 00173 C D STANCE FROM ROTATION AXI S
00121 C  62(1,3)=G2(3,1)=DDW/DXDZ, G2(2,2)=DDW/DYY, 00174 P=P0( 1)

00122 C  G2(2,3)=G2(3,2)=DDW/DYDZ AND G2(3,3)=DIW/DZZ 00175 C DI STANCE FROMCR AN

00123 C  WHERE W MAY BE | NTERCHANGEDWTH T AND 00176 R=P0(2)

00124 C VAR ABLES X, Y, Z ARE THE CARTESI AN COORDI NATES 00177 C CC8l NE CF OCLATI TUDE

00125 C  IN ALQCAL (FIXED) FRAME WTH RGN IN THE PO NT 00178 T=PO(3)

00126 C  CF EVALUATION_ X PGSITI VE NORTH Y PCBI TI VE EAST, 00179 C SINE CF OCLATI TUDE

001271 C  A\D Z POSI TIVE IN THE DI RECTION GF THE RADI US 00180 U=PO(4)

00128 C  VECTCR (GF. REF (1),EQ(4) AD(H). 00181 C SINE CF LONG TUDE

00129 C  THE vALUES GF WOR T W LL BE RETURNED IN GPOTDR. 00102 SL=PO(5) .

00130 C 00183 C COSI NE CF LONG TUDE

00131 C(CQ PASSED AND RETURNED VALUES 00184 CL=P0(6)

00132 C 00185 T2=T+T

00133 C sy 00186 POLE=DABS(U). LE 1D9

00134 C ARRAY CF DI MENSI ON K*(N+1), WHERE K- 2 FCR NO DER! VATI VES, 00187 NEW=DABS(OLDR-R).GT.1.D-3 .(R  DABS(OLDT-T).GT.1.D-9 .OR.
00135 C =6 FCR 0-TH AND FI RST DERI VATI VES, =10 FCR 0-TH, FIRST A\D 00188 . OLDORD.NE.ORDER .(R  POLE
00136 C ~ SECOND DER VATIVES. HERE ARE STCRED THE PARTIAL SUM & 00189 OLD=.NOT, NEW

00137 C REF.{2), BQ (29), GF P(N,M)*(A/R)*®(N+1-M)/F(M,M)*(C(N,M) OR 00190 NPOLE=.NOT. POLE

00138 C  S(N,M)) FROMN=MTO =i, AND THE DER VATI VES GF THESE SUM 00191 IF(OLD)GO T0 200

00139 C  TH S MKES | T UNNECESSARY TO RECALCULATE THESE QUANTI TIES, |F 00192 QADRR

00140 C  THE PROCEDURE | S CALLED SUBSEQUENTLY WTH THE SAVE VALLE CF T 00193 OLDT=T

00141 C  AD R, A\D THE SAME CRDER 00194 OLDORD=ORDER

00142 C 00195 200 QUASI=.FALSE.

00143 | MPLI O T REAL#8( A-H, 0-2) 00196 IF(CAPN.LT. 0)QUASI=. TRE
00144 | NTEGER CAPN, CRDER, CAPN21, OLDORD 00197 IF(QUASI)CAPN=-CAPN

@145 LOQ CAL QUASI,DERIV1,DERIVZ,POLE 00198 C COWPUTE AE/R

00146 LOd CAL FIRST,NEW,OLD,NPOLE 00199 5=CM2/R

00147 REAL*L C,CO 00200 S2:=Sk%2

00148 REAL*8 MP1,M21T,M21U,M21U0 00201 CMLP1(1)=1.DO

00149 DIMENSION SML(181),CHL(181) ,SMLP1(182),CHLP1(182),P0(6) 00202 C CML(0)=1.D0

00150 DIMENSION SU(1810) 00203 SMLP1(1)=0.D0

00151 COMMON/ SQROOT/DZERO, RODT( 362) 00204 C SML(0)=0.D0

00152 COMMON/ GPOTCM/OLDT, OLDR, 1Z, FIRST, OLDORD, I1,12,13,I4, 00205 DERIVI = FALSE

00153 . 15,16,I7,18,19,NMAXSY 00206 IF(ORDER.GT.0)DERIV1=.TRUE.
00154 COMMON/CM/C20IN, G1(3) ,G2(3,3) ,CM3,CH2, CM1,CO, C(32760) 00207 DERIV2=.FALSE.

00155 EQUIVALENCE(SML( 1),SMLP1(2)), (CML(1),CMLP1(2)) 00208 IHCGRERGI.1)  DERIV2=.TRUE.
00156 IF(NHAXSY, NE, HHAX)FIRST= ,FALSE, 00209 C

00157 NHAKSY = NVAX 00210 C SML(M) AND CHML(M) ARE THE SINE AND COSI NE OF MPLONGITUDE
00158 IF(FIRST)GO TO 100 00211 C

Q0159 FI RST-. TRE 00212 SML(1)=SL

00160 OLDT=2.D0 00213 CML( 1) =CL

00161 J=IABS(NMAX) 00214 C

00162 I=J+1 00215 HL =1

00216 DO 300 Ma2,CAPN





















